Preview

General Reanimatology

Advanced search

Erythropoiesis and Iron Exchange in Burns

https://doi.org/10.15360/1813-9779-2007-1-32-36

Abstract

The purpose of the study was to elucidate the specific features of the biorhythms of iron exchange and erythropoiesis in thermal injury and to define their role in the pathogenesis of anemia.

Materials and methods. Seventy-five patients aged 32 to 45 years, who had extensive (up to 50% of the body’s surface) superficial (second-to-third degree) thermal burns, were examined. A control group comprised 108 donors aged 25—35 years. Examinations were made four times daily on days 1, 2, 3, 7, 14, 21, 28, 38, 48, 60 after injury. The authors studied daily changes in the titers of erythropoietin (EP), ferritin (F), serum iron concentrations (SIC), MDA, the populations of the ineffective, normal, and terminal types of erythron kinetics (by the activity of glucose-6-phosphate dehydrogenase (G-6-PDG)).

Results. The progressive reduction in the levels of erythro-cytes and hemoglobin, which most intensive during three weeks after injury has been found to correlate with the rise in the population of microcytes with a low activity of G-6-PDG and shorter survival in the presence of significantly elevated concentrations of F, EP, and MDA in the evening. In the morning, the production of a highly active population of macrocytes, the progeny of terminal erythropoiesis is increased, which causes a decrease in SIC and levels its circadian rhythm due to the higher uptake of the trace.

Conclusion. The surplus of tissue iron pool due to hyperphagocytosis of short-lived erythrocytes, as well as high EP titer-induced inhibition of apoptosis have been ascertained to be the leading mechanisms of burn-related anemia. Their basis is the stimulation of the alternative (terminal and ineffective) types of erythron kinetics.

 

About the Authors

E. N. Barkova
Department of Pathophysiology, Tyumen State Medical Academy, Tyumen


L. F. Balabanova
Department of Pathophysiology, Tyumen State Medical Academy, Tyumen


Ye. V, Zhdanova
Department of Pathophysiology, Tyumen State Medical Academy, Tyumen


V. V. Kuznetsov
Department of Pathophysiology, Tyumen State Medical Academy, Tyumen


Ye. V. Nazarenko
Department of Pathophysiology, Tyumen State Medical Academy, Tyumen


References

1. Игнатов С. В. Система эритрона при ожогах. Гематология и трансфузиология 1990; 3 (35): 22—26.

2. Бернат И. Патогенез ожоговой анемии. Будапешт; 1975.

3. Парамонов Б. А., Порембский Я. О., Яблонский В. Г. Ожоги. Руководство для врачей. СПб.: СпецЛит; 2000.

4. Гусак В. К., Анишенко Л. Г., Фисталь Э. Я. и др. Возможные аспекты лечения анемии при тяжелой ожоговой травме. Травма 2001; 2 (2): 133—137.

5. Deitch E. A., Sitting K. M. A serial study of the erythropoietic response to thermal injury. Ann. Surg. 1993; 217: 293—299.

6. Рязанцева Н. В., Новицкий В. В., Рязанцев В. П. и др. Влияние ожоговой травмы на эритроциты. Гематология и трансфузиология 2002; 1 (47): 25—29.

7. Tomas C., Tomas L. Biochemical markers and hematologic indices in the diagnosis of functional iron deficiency. Clin. Chem. 2002; 48 (7): 1066—1076.

8. Нарциссов Р. П. Дегидрогеназы с применением пара-нитротетразолия фиолетового.В кн.: Н. С. Кисляк, Р. В. Ленская. Клетки крови у детей в норме и патологии. М.: Медицина; 1978. 148—150.

9. Баркова Э. Н., Жданова Е. В., Курлович Н. А. Хронофизиология и хронопатология обмена железа. Екатеринбург: Полиграфист; 2001.

10. Мосягина Е. Н. Нормальное кроветворение и его регуляция М.: Медицина; 1976. 341—363.

11. Стальная И. Д. Современные методы в биохимии. М.: Медицина; 1977. 63-66.

12. Spolarics Z., Siddiqi M., Siegel J. H. et al. Increased incidence of sepsis and altered monocyte functions in severely injured type A-glucose-6-phosphate dehydrogenase- deficient African American trauma patients. Crit. Care Med. 2001; 29:728-736.

13. Vincent J. L., Baron J. F., Reinhart K. D. et al. Anemia and blood transfusion in critically ill patients. JAMA 2002; 288: 1499—1507.

14. Nakao K. S., Sassa O. et al. Enzymatic studies on erythroid differentiation and proliferation. Ann. N.Y. Acad. Sci. 1968; 149: 224—232.

15. Stohlman F., Ebbe S., Morse B. et al. Regulation of erythropoiesis. XX. Kinetics of red cell production. Ann. N.Y. Acad. Sci. 1968; 149:156—172.

16. Lajtha L. G., Gilbert C. W., Cuzman F. Kinetics of haematopoietic colony. Brit. J. Haemat.1971; 20: 343—354.

17. Шостка Г. Д. Анемия и пути ее коррекции. В кн.: Лечение ХПН. СПб.: 1997. 242—274.

18. Bessis M., Brecher G. A second look at stress erythropoiesis — Unanswered questions. Blood Cells 1975; 1 (3): 409—414.

19. Paganini E., Abdulhadi M., Gartia J. et al. Recombinant human erythropoietin correcion of anemia. Trans. Am. Soc. Artif. Intern. Organs1989; 35: 513—515.

20. Zhang J., Lodish. H. F. Identification of K-ras as the major regulator for cytokine — dependent. Akt activation in erythroid progenitors in vivo. Proc. Natl. Acad. Sci. 2005; 102 (41): 14605—14610.

21. Nakae H., Endo S., Yamada Y., Inada K. Bound and solution adhesive molecule and cytokine levels in patients with severe burns. Burns 2000; 26: 39—44.


Review

For citations:


Barkova E.N., Balabanova L.F., Zhdanova Ye.V., Kuznetsov V.V., Nazarenko Ye.V. Erythropoiesis and Iron Exchange in Burns. General Reanimatology. 2007;3(1):32-36. (In Russ.) https://doi.org/10.15360/1813-9779-2007-1-32-36

Views: 1914


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)