Preview

Общая реаниматология

Расширенный поиск

Биомаркеры острого повреждения легких

https://doi.org/10.15360/1813-9779-2006-4-94-99

Полный текст:

Аннотация

Проведен анализ литературных данных по вопросу диагностической значимости биологических маркеров острого повреждения легких в критических состояниях. Показано, что исследование диагностической и прогностической значимости биологических маркеров острого повреждения легких является перспективным направлением в разделе критических состояний. Наибольшей эффективностью биологические маркеры ОПЛ будут обладать при оценке: развития острого повреждения легких на доклиническом этапе, дифференциации экссудативной и пролиферативной стадий ОПЛ/ОРДС, показаний к респираторной поддержке. Биологические маркеры ОПЛ способны предсказать развитие вентилятор-индуцированного повреждения легких. Наибольшей диагностической и прогностической значимостью, вероятно, будет обладать анализ экспрессии генов, исследование массива последовательности нуклеотидов ДНК в клетках с целью определения предрасположенности к синтезу цитокинов и межклеточных сигнальных молекул.

 

Об авторах

Е. В. Григорьев
ГОУВПО «Кемеровская государственная медицинская академия Росздрава»


Ю. А. Чурляев
Филиал ГУ НИИ общей реаниматологии РАМН, Новокузнецк


А. С. Разумов
ГОУВПО «Кемеровская государственная медицинская академия Росздрава»


Список литературы

1. Ware L. B., Matthay M. A. The acute respiratory distress syndrome. N. Engl. J. Med. 2000; 342: 1334—1349.

2. Future research directions in acute lung injury (summary of a National Heart, Lung and Blood Institute Working Group). Am. J. Respir Crit. Care Med. 2003, 167: 1027—1035.

3. Parsons P. E. Mediators and mechanisms of acute lung injury. Clin. Chest Med. 2000; 21: 467—476.

4. Pitet J. 9F., Mackersie R. C., Martin T. R. et al. Biological markers of acute lung injury: prognostic and pathogenetic significance. Am. J. Respir. Crit. Care Med. 1997; 155: 1187—1205.

5. Tomashevsky J. F. Jr. Pulmonary pathology of acute respiratory distress syndrome. Clin. Chest Med. 2000; 21: 435—466.

6. Khadaroo R. G., Marshall J. C. ARDS and the multiple organ dysfunction syndrome: common mechanisms of a common systemic process. Crit. Care Clin. 2002; 18: 127—141.

7. Mulligan M. S., Vaporciyan A. A., Warner R. L. et al. Compartmentalized roles for leukocytic adhesion molecules in lung inflammatory injury. J. Immunol. 1995; 154: 1350—1363.

8. Nelson S., Bagby G. J., Bainton B. G. et al. Compartmentalization of intraalveolar and systemic lipopolysaccharide induced tumor necrosis factor and the pulmonary inflammatory response. J. Infect. Dis. 1989; 159: 189—194.

9. Tutor J. D., Mason C. M., Dobard E. et al. Loss of compartmentalization of alveolar tumor necrosis factor after lung injury. Am. J. Respir. Crit. Care Med. 1994; 149: 1107—1111.

10. Pugin J., Ricou B., Steinberg K. P. et al. Proinflammatory activity in bronchoalveolar lavage fluids from patients with ARDS, a prominent role for interleukin-1β. Am. J. Respir. Crit. Care Med. 1996; 153: 1850—1856.

11. Repine J. E., Beehler C. J. Neutrophils and the adult respiratory distress syndrome: two interlocking perspectives. Am. Rev. Respir. Dis. 1991; 144: 251—252.

12. Rolfe M. W., Kunkel S. L., Standiford T. J. et al. Pulmonary fibroblast expression of interleukin-8: a model for alveolar macrophage-derived cytokine networking. Am. J. Respir. Cell Mol. Biol. 1991; 5: 493—501.

13. Nelson M. E., Wald T. C., Bailey K. et al. Intrapulmonary cytokine accumulation following BAL and the role of endotoxin contamination. Chest 1999; 115: 151—157.

14. Meduri G. U., Kohler G., Headley S. et al. Inflammatory cytokines in the BAL of patients with ARDS: persistent elevation over time predicts outcome. Chest 1995; 108: 1303—1314.

15. Suter P. M., Suter S., Girardin E. et al. High bronchoalveolar levels of tumor necrosis factor and its inhibitors, interleukin 1, interferon, and elastase, in patients with adult respiratory distress syndrome after trauma, shock, or sepsis. Am. Rev. Respir. Dis. 1992; 145: 1016—1022.

16. Hyers T. M., Tricomi S. M., Dettenmeier P. A. et al. Tumor necrosis factor levels in serum and bronchoalveolar lavage fluid of patients with the adult respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 1991; 144: 268—271.

17. Geiser T., Atabani K., Jarreau P. H. et al. Pulmonary edema fluid from patients with acute lung injury augments in vitro alveolar epithelial repair by an IL 1 beta dependent mechanism. Am. J. Respir. Crit. Care Med. 2001; 2001: 1384—1388.

18. Kunst P. W. A., Vonk N. A., Raaijmakers E. et al. Electrical impedance tomography in the assessment of extravascular lung water in noncardiogenic Acute Respiratory Failure. Chest 1999; 116: 1695—1702.

19. Newman V., Gonzales R., Matthay V. A. et al. A novel alveolar type I cell — specific biochemical marker of human acute lung injury. Am. J. Respir. Crit. Care Med. 2000; 161: 990—995.

20. Ware L. B., Matthay M. A. Keranocyte and hepatocyte growth factors in the lung: roles on lung development, inflammation and repair. Am. J. Physiol. Lung Cell Mol. Physiol. 2002; 282: 924—940.

21. Gimbrone M. A., Nagel T., Topper J. N. Biochemical activation: an emerging paradigm in endothelial adhesion biology. J. Clin. Invest. 1997; 99: 1809—1813.

22. Zimmerman G. A., McIntyre T. M., Prescotte S. M. Adhesion and signaling in vascular cell-cell interactions. J. Clin. Invest. 1996; 98: 1699—1702.

23. Park W. Y., Goodman R. B., Steinberg K. P. et al. Cytokine balance in the lungs of patients with acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 2001; 164: 1896—1903.

24. Granger D. N., Kubes P. The microcirculation and inflammation: modulation of leukocyte-endothelial cell adhesion. J. Leukoc. Biol. 1994; 55: 662—675.

25. Topham M. K., Carveth H. J., McIntyre T. M. et al. Human endothelial cells regulate polymorphonuclear leukocyte degranulation. FASEB J. 1998; 12: 733—746.

26. Modur V., Zimmerman G. A., Prescott S. M. et al. Endothelial cell inflammatory responses to tumor necrosis factor alpha: ceramide-dependent and -independent mitogen-activated protein kinase cascades. J. Biol. Chem. 1996; 271: 13094—13102.

27. Gharib S. A., Liles W. C., Matute9Bello G. et al. Computational identification of key biological modules and transcription factors in acute lung injury. Am. J. Respir. Crit. Care Med. 2006; 173: 653—658.

28. Ware L. B., Golden J. A., Finkber W. E. et al. Alveolar epithelial fluid transport capacity in reperfusion lung injury after lung transplantation. Am. J. Respir. Crit. Care Med. 1999; 159: 980—988.

29. O'Brodovich H. Pulmonary edema fluid movement within the lung. A. J. P. 2001; 281: 1324—1326.

30. Perkins G. D., Chatterjie S., McAuley D. et al. Role of nonbronchoscopic lavage for investigating alveolar inflammation and permeability in acute respiratory distress syndrome. Crit. Care Med. 2006; 34(1): 57—64.

31. De Pasquale C. G., Arnolda L. F., Doyle I. R. et al. Prolonged alveolocapillary barrier damage after acute cardiogenic pulmonary edema. Crit. Care Med. 2003; 31(4): 1060—1067.

32. Lorant D. E., Zimmerman G. A., McIntyre T. M. et al. Platelet-activating factor mediates procoagulant activity on the surface of endothelial cells by promoting leukocyte adhesion. Semin Cell Biol. 1995; 6: 295—303.

33. Ware L. B., Elsner M. D., Thompson T. et al. Significance of von Willebrand factor in septic and nonseptic patients with acute lung injury. Am. J. Respir. Crit. Care Med. 2004; 170: 766—772.

34. Fu Z., Costello M. L., Tsuikimoto K. et al. High lung volume increases stress failure in pulmonary capillaries. J. Appl. Physiol. 1992; 73: 123—133.

35. Tramblay L., Valenza F., Ribeiro S. P. et al. Injurious ventilator strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J. Clin. Invest. 1997; 99: 944—952.

36. Kuebler W. M., Ying X., Singh B. et al. Pressure is proinflammatory in lung venular capillaries. J. Clin. Invest. 1999; 104: 495—502.

37. Gerritsen M. E., Bloor C. M. Endothelial cell gene expression in response to injury. FASEB J. 1993; 7: 523—532.

38. Patel K. D., Zimmerman G. A., Prescott S. M. et al. Oxygen radicals induce human endothelial cells to express GMP-140 and bind neutrophils. J. Cell Biol. 1991; 112: 749—759.

39. Matute9Bello G., Liles W. C., Radella F. R. et al. Neutrophil apoptosis in the acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 1997; 156: 1969—1977.

40. McElroy M. C., Pittet J. F., Hashimoto S. et al. A type I cell-specific protein is a biochemical marker of epithelial injury in a rat model of pneumonia. Am. J. Physiol. 1995; 268: 181.

41. Ye S. Q., Simon B. A., Maloney J. P. et al. Pre-B-cell colony-enhancing factor as a potential novel biomarker in acute lung injury. Am. J. Respir. Crit. Care Med. 2005; 171: 361—370.

42. Gong M. N., Wei Z., Xu L. 9L. et al. Polymorphism in the Surfactant Protein-B Gene, Gender, and the Risk of Direct Pulmonary Injury and ARDS. Chest 2004; 125: 203—211.

43. Schultz M. J., Haitsma J. J., Zhang H. et al. Pulmonary coagulopathy as a new target in therapeutic studies of acute lung injury or pneumonia. Crit. Care Med. 2006; 34 (3): 871—877.

44. Rubin D. B., Wiener9Kronish J. P., Murray J. F. et al. Elevated von Willebrand factor antigen is an early plasma predictor of acute lung injury in nonpulmonary sepsis syndrome. J. Clin. Invest. 1990; 86: 474—480.

45. Prabhakaran P., Lorraine B. W., Kimbarly W. et al. Elevated levels of plasminogen activator-1 in pulmonary edema fluid are associated with mortality in acute lung injury. Am. J. Physiol. Lung Cell Mol. Physiol. 2003; 285: 20—28.

46. Martin T., Hagimoto N., Nakamura M. et al. Apoptosis and epithelial injury of the lung. Proc. Am. Thorac. Soc. 2005; 2: 214—220.

47. Fink M. P. Role of reactive oxygen and nitrogen species in acute respiratory distress syndrome. Curr. Opin. Crit. Care 2002; 8: 6—11.

48. Zhu S., Ware L. B., Geiser T. et al. Increased levels on nitrate and surfactant protein A nitration in pulmonary edema fluid of patients with acute lung injury. Am. J. Resp. Crit. Care Med. 2001; 163: 166—172.

49. King L. S., Agre P. Aquaporins in the airways. Am. J. Respir. Cell Mol. Biol. 2001; 24: 221—223.

50. Matthay M. A., Robriquet L., Fang X. Alveolar epithelium: role in lung fluid balance and acute lung injury. Proc. Am. Thorac. Soc. 2005: 2: 206—213.

51. Crandall E. D., Matthay M. A. Alveolar epithelial transport Am. J. Respir. Crit. Care Med. 2001; 162: 1021—1029.

52. Metha D., Bhattaryan J., Matthay M. et al. Integrated control of lung fluid balance. Am. J. Physiol. Lung Cell Mol. Physiol. 2004; 287: 1081—1090.

53. Verkman A. S., Matthay M., Song Y. Aquaporin water channels and lung physiology. Am. J. Physiol. Lung Cell Mol. Physiol. 2000; 278: 867—879.

54. Neufeld G., Cohen T., Genrihovitch S. Vascular growth factor and its receptors. FASEB 1999; 13: 9—22.

55. Bowler R. P., Beth D., Chan E. D. et al. Proteomic analysis of pulmonary edema fluid and plasma in patients with acute lung injury. Am. J. Physiol. Lung Cell Mol. Physiol. 2004; 286: 1095—1104.

56. Ricard J. 9D., Dreyfuss D., Saumon G. Ventilator-induced injury. Curr. Opinion in Crit. Care 2002; 8: 12—20.

57. Gajic O., Lee J., Doerr C. H. et al. Ventilator induced cell wounding and repair in the intact lung. Am. J. Respir. Crit. Care Med. 2003; 167 (8): 1057—1063.

58. Campbell A., Folkesson H., Berthiaume Y. et al. Alveolar epithelial fluid clearance persists in the presence of right atrial hypertension in sheep. J. Appl. Physiol. 1999; 86 (1): 139—151.

59. Ma S. 9F., Grigoryev D. N., Taylor A. D. et al. Bioinformatic identification of novel early stress response genes in rodent models of lung injury. Am. J. Physiol. Lung Cell Mol. Physiol. 2005; 289: 468—477.

60. dos Santos C. C., Han B., Andrade C. F. et al. DNA microarray analysis of gene expression in alveolar epithelial cells in response to TNFalpha, LPS, and cyclic stretch. Physiol Genomics 2004; 19: 331—342.

61. Wispe J. R., Clark J. C., Warner B. B. et al. Tumor necrosis factor-alpha inhibits expression of pulmonary surfactant protein. J. Clin. Invest. 1990; 86: 1954—1960.

62. Jeyaseelan S., Chu H. W., Young S. K. et al. Transcriptional profiling of lipopolysaccharide-induced acute lung injury. Infect. Immun. 2004; 72: 7247—7256.

63. Olman M. A., White K. E., Ware L. B. et al. Microarray analysis indicates that pulmonary edema fluid from patients with acute lung injury mediates inflammation, mitogen gene expression, and fibroblast proliferation through bioactive interleukin-1. Chest 2002; 121: 69—70.

64. Copland I. B., Kavanagh B. P., Engelberts D. et al. Early changes in lung gene expression due to high tidal volume. Am. J. Respir. Crit. Care Med. 2003; 168: 1051—1059.

65. Uhlig S., Ranieri M., Slutsky A. S. et al. Biotrauma hypothesis of ventilatorinduced lung injury. Am. J. Respir. Crit. Care Med. 2004; 169 (2): 314—316.

66. Nonas S. A., Finlgan J. H., Gao L. et al. Functional genomic insight into acute lung injury. Proc. Am. Thorac. Soc. 2005; 2: 188—194.

67. Villar J. Genetics and the pathogenesis of adult respiratory distress syndrome. Curr. Opin. Crit. Care 2002; 8: 1—5.


Для цитирования:


Григорьев Е.В., Чурляев Ю.А., Разумов А.С. Биомаркеры острого повреждения легких. Общая реаниматология. 2006;2(4):94-99. https://doi.org/10.15360/1813-9779-2006-4-94-99

For citation:


Grigoryev Y.V., Churlyaev Y.A., Razumov A.S. Biomarkers of Acute Lung Lesion. General Reanimatology. 2006;2(4):94-99. (In Russ.) https://doi.org/10.15360/1813-9779-2006-4-94-99

Просмотров: 489


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)