Preview

General Reanimatology

Advanced search

The Amplitude and Frequency Spectrum of Skin Blood Flow Fluctuations in Acute Blood Loss (An Experimental Study)

https://doi.org/10.15360/1813-9779-2014-5-6-17

Abstract

Objective: to study the specific features of skin blood flow changes in blood loss and after its replacement.

Material and methods. Experiments were carried out on 22 outbred male rats weighing 400—550 g, anesthetized with nembutal or chloralhydrate. The caudal artery was catheterized to measure blood pressure (BP), to sample and reinfuse blood. Skin blood flow in the area of the right ear was recorded by laser Doppler flowmetry. Onehour hypovolemic hypotension followed by autoblood reinfusion served as a model. Blood loss volume necessitated maintenance of BP at about 50 mm Hg by 60 minutes of hypotension. The investigators deter mined the following indicators of skin blood flow: microcirculatory index (MI) and relative perfusion units (pf. u); a wavelet method was used to estimate the maximum amplitudes of blood flow fluctuations (flux motions) in the ranges accepted to be correlated with active and passive mechanisms to regulate microcirculation. The data were statistically processed by applying the Statistica 7.0 program. The results were presented as Me (25%; 75%).

Results. The animals were divided into groups according to blood loss volume: lower (L) and higher (H) than average. At 60 minutes of hypotension, BP in both groups averaged 53 mm Hg, but the L group showed a tendency (p<0.1) towards a greater MI and a longer  mplitude of flux motions in the neurogenic (An) and additional (Aa) frequency ranges (p<0.05) than in the H group. At 60 minutes of blood reinfusion, all the analyzed indicators returned to the base
line values (except a tendency (p<0.1) towards a lower MI) in the H group while BP remained below the baseline value in the L group. In the same followup period, the amplitudes of flux motions in the An and Aa ranges were higher and MI and BP were lower in the L group than in the H group (p<0.05).

Conclusion. During hypovolemic hypotension and reinfusion, the increased amplitude of flux motions involves an animal's individual and typological capacity to compensate blood loss and to maintain blood flow under tissue hypoperfusion.

About the Authors

I. A. Ryzhkov
V. A. Negovsky Research Institute of General Reanimatology, Moscow, Russia
Russian Federation
25, Petrovka St., Build. 2, Moscow 107031


I. S. Novoderzhkina
V. A. Negovsky Research Institute of General Reanimatology, Moscow, Russia
Russian Federation
25, Petrovka St., Build. 2, Moscow 107031


Yu. V. Zarzhetsky
V. A. Negovsky Research Institute of General Reanimatology, Moscow, Russia
Russian Federation
25, Petrovka St., Build. 2, Moscow 107031


References

1. Moroz V.V., Bobrinskaya I.G., Vasilyev V.Yu., Spiridonova E.A., Tishkov E.A., Suryakhin V.S. Shok. Uchebnometodicheskoe posobie. [Shock. A teaching guide]. Moscow; 2011: 29. [In Russ.]

2. Gutierrez G., Reines H.D., WulfGutierrez M.E. Clinical review: hemor rhagic shock. Crit. Care. 2004; 8 (5): 373—381. PMID: 15469601

3. Kozhura V.L., Novoderzhkina I.S., Kirsanova A.K. Ostraya massivnaya krovopoterya: mekhanizmy kompensatsii. [Acute and massive hemor rhage: mechanisms of compensation and damage]. Anesteziologiya i Reanimatologiya. 2002; 6: 9–13. PMID: 12611148. [In Russ.]

4. Kerger H., Waschke K.F., Ackern K.V., Tsai A.G., Intaglietta M. Systemic and microcirculatory effects of autologous whole blood resuscitation in severe hemorrhagic shock. Am. J. Physiol. 1999; 276 (6 Pt 2): H2035— H2043. PMID: 10362685

5. Torres Filho I.P., Torres L.N., Pittman R.N. Early physiologic responses to hemorrhagic hypotension. Transl. Res. 2010; 155 (2): 78—88. http://dx.doi.org/10.1016/j.trsl.2009.09.001. PMID: 20129488

6. Aleksandrin V.V., Kozhura V.L., Novoderzhkina I.S., Parshina E.Yu. Funktsionalnoe sostoyanie mozga i tserebralnyi krovotok v postishemicheskom periode. [Postishemic cerebral function and blood flow. General Reanimatology]. 2005; 1 (4): 23—26. [In Russ.]

7. Donati A., Domizi R., Damiani E., Adrario E., Pelaia P., Ince C. From macrohemodynamic to the microcirculation. Crit. Care Res. Pract. 2013; 2013: 892710. http://dx.doi.org/10.1155/2013/892710. PMID: 23509621

8. Kosovskikh A.A., Churlyaev Yu.A., Kan S.L., Lyzlov L.N., Kirsanov T.V., Vartanyan A.R. Tsentralnaya gemodinamika i mikrotsirkulyatsiya prikriticheskikh sostoyaniyakh. Obshchaya Reanimatologiya. [Central hemodynamics and microcirculation in critical conditions. General Reanimatology]. 2013; 9 (1): 18—22. [In Russ.]

9. Tokmakova T.O., Permyakova S.Yu., Kiseleva A.V., Shukevich D.L., Grigoryev E.V. Monitoring mikrotsirkulyatsii v kriticheskikh sostoy aniyakh: vozmozhnosti i ogranicheniya. Obshchaya Reanimatologiya. [Microcirculation monitoring in critical conditions: Possibilities and limitations. General Reanimatology]. 2012; 8 (2): 74—78. [In Russ.]

10. Wan Z., Sun S., Ristagno G., Weil V.H., Tang W. The cerebral microcir culation is protected during experimtntal hemorrhagic shock. Crit. Care Med. 2010; 38 (3): 928—932. http://dx.doi.org/10.1097/ CCM.0b013e3181cd100c. PMID: 20068466

11. Stefanovska A., Bracic M. Physics of the human cardiovascular system. Contemporary Physics. 1999; 40 (1): 31—35. http://dx.doi.org/10.1080/001075199181693

12. Krupatkin A.I., Sidorov V.V. Lazernaya dopplerovskaya floumetriya mikrotsirkulyatsii krovi. Rukovodstvo dlya vrachei. [Laser Doppler flowmetry of blood microcirculation. A guide to physicians]. Moscow: Meditsina Publishers; 2005: 256. [In Russ.]

13. Kozlov V.I., Azizov G.A., Gurova O.A., Litvin F.B. Lazernaya dopplerovskaya floumetriya v otsenke sostoyaniya i rasstroistv mikrot sirkulyatsii krovi. Metodicheskoe posobie dlya vrachei. [Laser Doppler flowmetry in the evaluation of the state and disorders of blood micro circulation. Guidelines for physicians]. Moscow; 2012: 32. [In Russ.]

14. Intaglietta M. Vasomotion and flowmotion: physiological mechanisms and clinical evidence. Vasc. Med. 1990; 1: 101–112. http://dx.doi.org/10.1177/1358836X9000100202.

15. Aalkjær C., Boedtkjer D., Matchkov V. Vasomotion — what is currently thought? Acta Physiol. (Oxf.). 2011; 202 (3): 253—269. http://dx.doi.org/10.1111/j.1748—1716.2011.02320.x. PMID: 21518271

16. Borgström P., Schmidt J.A., Bruttig S.P., Intaglietta M., Arfors K.E. Slow wave flowmotion in rabbit skeletal muscle after acute fixedvolume hemorrhage. Circ. Shock. 1992; 36 (1): 57—61. PMID: 1551185

17. Vollmar B., Preissler G., Menger M.D. Hemorrhagic hypotension induces arteriolar vasomotion and intermittent capillary perfusion in rat pancreas. Am. J. Physiol. 1994; 267 (5 Pt 2): 1936—1940. PMID: 7977824

18. Li Z., Tam E.W., Kwan M.P., Mak A.F., Lo S.C., Leung M.C. Effects of prolonged surface pressure on the skin blood flowmotions in anaes thetized rats—an assessment by spectral analysis of laser Doppler flowmetry signals. Phys. Med. Biol. 2006; 51 (10): 2681—2694. http://dx.doi.org/10.1088/0031—9155/51/10/020. PMID: 16675876

19. Braverman I.M., Keh A., Goldminz D. Correlation of laser Doppler wave patterns with underlying microvascular anatomy. J. Invest. Dermatol. 1990; 95 (3): 283—286. http://dx.doi.org/10.1111/15231747.ep12484917. PMID: 2143522

20. Bajrovic F., Cenfur M., Hoiif M., Ribarif S., Stefanovska A. The contribution of lumbar sympathetic neurones activity to rat skin blood flow oscillations. Eur. J. Physiol. 2000; 439 (3 Suppl): R158R160. http://dx.doi.org/10.1007/s004240000129. PMID: 10653176

21. Schmidt J.A., Borgström P., Intaglietta M. Neurogenic modulation of periodic hemodynamics in rabbit skeletal muscle. J. Appl. Physiol. 1993; 75 (3): 1216—1221. PMID: 8226532

22. Colantuoni A., Bertuglia S., Intaglietta M. Effects of anesthesia on the spontaneous activity of the microvasculature. Int. J. Microcirc. Clin. Exp. 1984; 3 (1): 13—28. PMID: 6480227

23. Wilkin J.K. Poiseuille, periodicity, and perfusion: rhythmic oscillatory vasomotion in the skin. J. Invest. Dermatol. 1989; 93 (2 Suppl): 113—118. http://dx.doi.org/10.1111/1523—1747.ep12581224. PMID: 3706552

24. Goldman D., Popel A.S. A computational study of the effect of vasomotion on oxygen transport from capillary networks. J. Theor. Biol. 2001; 209 (2): 189—199. http://dx.doi.org/10.1006/jtbi.2000.2254. MID: 11401461

25. Thorn C.T., Kyte H., Slaff D.W., Shore A.C. An association between vasomotion and oxygen extraction. J. Physiol. Heart Circ. 2011; 301 (2): 442—449. http://dx.doi.org/10.1152/ajpheart.01316.2010. PMID: 21602466

26. Ryzhkov I.A., Kirsanova A.K., Zarzhetsky Yu.V. Amplitudnochastotnyi spektr kolebanii mozgovogo krovotoka pri gemorragicheskom shoke. Obshchaya Reanimatologiya. [The amplitude and frequency spectrum of cerebral blood flow fluctuations in hemorrhagic shock. General Reanimatology]. 2014; 10 (2): 5—17. [In Russ.]

27. Kan S.K., Churlyaev Yu.A., Dantsiger D.G., Kosovskikh A.A., Ekimovskikh A.V., Sitnikov P.G. Perifericheskaya mikrotsirkulyatsiya i funktsii endoteliya pri komakh, obuslovlennykh ostrym arusheniem mozgovogo krovoobrashcheniya. Obshchaya Reanimatologiya [Peripheral microcirculation and endothelial function in comas induced by acute cerebrovascular accident. General Reanimatology]. 2012; 8 (3): 31—35. [In Russ.]

28. Kosovskikh A.A., Kan S.L., Churlyaev Yu.A., Zoloeva O.S., Baranov A.A., Kruglyakov O.O. Funktsionalnoe sostoyanie mikrotsirkulyatsii kishechnika pri razlitom peritonite. Obshchaya Reanimatologiya. [The functional state of intestinal microcirculation in diffuse peritonitis. General Reanimatology]. 2012; 8 (2): 33—37. [In Russ.]


Review

For citations:


Ryzhkov I.A., Novoderzhkina I.S., Zarzhetsky Yu.V. The Amplitude and Frequency Spectrum of Skin Blood Flow Fluctuations in Acute Blood Loss (An Experimental Study). General Reanimatology. 2014;10(5):6-17. https://doi.org/10.15360/1813-9779-2014-5-6-17

Views: 1451


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)