Preview

Общая реаниматология

Расширенный поиск

МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКИЕ МАРКЕРЫ НОЗОКОМИАЛЬНОЙ ПНЕВМОНИИИ ОСТРОГО РЕСПИРАТОРНОГО ДИСТРЕСС-СИНДРОМА

https://doi.org/10.15360/1813-9779-2015-3-24-38

Полный текст:

Аннотация

Риск развития, особенности течения нозокомиальной пневмонии (НП) и острого респираторного дистресс-синдрома (ОРДС) зависит не только от свойств возбудителя, но и от генетических особенностей больного. Известен значительный вклад генетических факторов в предрасположенность, особенности течения и исхода при инфекционных осложнениях критических состояний. Цель данного исследования — выявление генотипов, сопряженных с риском развития НП и ОРДС.

Материалы и методы. Были изучены однонуклеотидные полиморфные варианты (SNPs) в генах детоксикации ксенобиотиков и оксидативного стресса (CYP1A1 (три сайта), AhR, ABCB1, SOD2, GCLC, CAT), а также в генах сосудистого гомеостаза (ACE, AGT, AGTR1, NOS3, VEGFα и MTHFR) с помощью тетра-праймерной аллельспецифической полимеразной цепной реакции (ПЦР). Были генотипированы 750 человек: 419 больных и пострадавших (81,1% мужчин, в возрасте 42.9±0,9 года), госпитализированных в клинические базы НИИ общей реаниматологии им. В. А. Неговского (Москва, Россия).

Результаты. В группе больных зарегистрированы 268 случаев НП. Индивидуальный SNPs анализ показал, что среди больных НП риск развития ОРДС сопряжен с носительством следующих генотипов: CYP1A1 rs2606345-Т/Т (p=0,0027, OR=2,38, 95% CI: 1,35—4,17) и AhR rs2066853-G/A-A/A (p=0,0012, OR=2,94, 95% CI: 1,54—5,60). Частота встречаемости С-аллеля гена AGTR1 rs5186 была значительно выше среди выживших (в группе НП). Оценка мультипликативной генетической модели генов, которые продемонстрировали наибольшие однолокусные эффекты в связи с риском развития ОРДС, и госпитальной летальности, позволила установить комплексный генотип, включающий сочетание рисковых аллелей генов системы детоксикации и сосудистого гомеостаза (CYP1A1 rs2606345-T — AhR rs2066853-A и ACE rs4340-D — AGT rs699-C — AGTR1 rs5186-C), ассоциированный с повышенным риском развития как НП, так и ОРДС, а также с вероятностью летального исхода.

Вывод. Ряд аллельных вариантов генов детоксикации ксенобиотиков сопряжен с риском развития нозокомиальной пневмонии и ОРДС: CYP1A1 rs2606345-Т/Т, AhRrs2066853 G/A-A/A и AGT rs699 C/C AhR rs2066853-G/A-A/A. Сочетание двух и более рисковых аллелей в генах CYP1A1, AhR, ACE, AGT и AGTR1 у одного и того же больного повышает риск развития НП. Увеличение количества рисковых аллелей до четырех и более у больных НП сопряжено с риском развития ОРДС.

Об авторах

Т. В. Смелая
НИИ общей реаниматологии им. В. А. Неговского, Москва
Россия

Россия, 107031, Москва, ул. Петровка, д. 25, стр. 2



А. Н. Кузовлев
НИИ общей реаниматологии им. В. А. Неговского, Москва
Россия

Россия, 107031, Москва, ул. Петровка, д. 25, стр. 2



В. В. Мороз
НИИ общей реаниматологии им. В. А. Неговского, Москва
Россия

Россия, 107031, Москва, ул. Петровка, д. 25, стр. 2



А. М. Голубев
НИИ общей реаниматологии им. В. А. Неговского, Москва
Россия

Россия, 107031, Москва, ул. Петровка, д. 25, стр. 2



О. Б. Белопольская
Институт общей генетики им. Н. И. Вавилова, Москва
Россия

Россия, 117971, Москва, ул. Губкина, 3



Л. Е. Сальникова
НИИ общей реаниматологии им. В. А. Неговского, Москва Институт общей генетики им. Н. И. Вавилова, Москва
Россия

Россия, 107031, Москва, ул. Петровка, д. 25, стр. 2

 

Россия, 117971, Москва, ул. Губкина, 3



Список литературы

1. Yoon Y.S. Respiratory review of 2012: pneumonia. Tuberc. Respir. Dis. (Seoul). 2012; 73 (2): 77–83. http://dx.doi.org/10.4046/trd.2012.73.2.77. PMID: 23166539

2. Schuetz P., Batschwaroff M., Dusemund F., Albrich W., Bürgi U., Maurer M., Brutsche M., Huber A.R., Müller B. Effectiveness of a procalcitonin algorithm to guide antibiotic therapy in respiratory tract infections

3. outside of study conditions: a post-study survey. Eur. J. Clin. Microbiol. Infect. Dis. 2010; 29 (3): 269—277. http://dx.doi.org/10.1007/s10096-009-0851-0. PMID: 20039090

4. Мороз В.В., Смелая Т.В., Голубев А.М., Сальникова Л.Е. Генетика и медицина критических состояний: от теории к практике. Общая реаниматология. 2012; 8 (4): 5—12. http://dx.doi.org/10.15360/1813-9779-2012-4-5

5. Determann R.M., Royakkers A., Wolthuis E.K., Vlaar A.P., Choi G., Paulus F., Hofstra J.J., de Graaff M.J., Korevaar J.C., Schultz M.J. Ventilation with lower tidal volumes as compared with conventional tidal volumes for patients without acute lung injury: a preventive randomized controlled trial. Crit. Care. 2010; 14 (1): R1. http://dx.doi.org/ 10.1186/cc8230. PMID: 20055989

6. Copland I.B., Post M. Understanding the mechanisms of infant respiratory distress and chronic lung disease. Am. J. Respir. Cell Mol. Biol.

7. ; 26 (3): 261—265. http://dx.doi.org/10.1165/ajrcmb.26.3.f231.PMID: 11867331

8. Баранов В.С., Глотов О.С., Баранова Е.В. Геномика старения и предиктивная медицина. Успехи геронтологии. 2010; 23 (3): 329—338. PMID: 21137201

9. van de Vosse E., van Dissel J.T., Ottenhoff T.H. Genetic deficiencies of innate immune signalling in human infectious disease. Lancet Infect. Dis. 2009; 9 (11): 688—698. http://dx.doi.org/10.1016/S1473-3099(09)70255-5. PMID: 19850227

10. Brownson R.C., Dodson E.A., Stamatakis K.A., Casey C.M., Elliott M.B., Luke D.A., Wintrode C.G., Kreuter M.W. Communicating evidence-based information on cancer prevention to state-level policy makers. J. Natl. Cancer Inst. 2011; 103 (4): 306—316. http://dx.doi.org/10.1093/jnci/djq529. PMID: 21212381

11. Davies P.D., Yew W.W., Ganguly D., Davidow A.L., Reichman L.B., Dheda K., Rook G.A. Smoking and tuberculosis: the epidemiological association and immunopathogenesis. Trans. R. Soc. Trop. Med. Hyg. 2006; 100 (4): 291—298. http://dx.doi.org/10.1016/j.trstmh.2005.06.034. PMID: 16325875

12. Angus D.C., Burgner D., Wunderink R., Mira J.P., Gerlach H., Wiedermann C.J., Vincent J.L. The PIRO concept: P is for predisposition. Crit. Care. 2003; 7 (3): 248—251. PMID: 12793879

13. Mandell L.A., Wunderink R.G., Anzueto A., Bartlett J.G., Campbell G.D., Dean N.C., Dowell S.F., File T.M.Jr., Musher D.M., Niederman M.S., Torres A., Whitney C.G.; Infectious Diseases Society of America; American Thoracic Society. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin. Infect. Dis. 2007; 44 Suppl 2: S27—S72. http://dx.doi.org/10.1086/511159.PMID: 17278083

14. Назаренко Г.И., Клейменова Е.Б., Гущина Н.Н. Изучение генетических маркеров и традиционных факторов риска развития ишемической болезни сердца. Рос. мед. вести. 2009; 14 (1): 47—54.

15. Christie D., Shofer J., Millard S.P., Li E., Demichele-Sweet M.A., Weamer E.A., Kamboh M.I., Lopez O.L., Sweet R.A., Tsuang D. Genetic association between APOE*4 and neuropsychiatric symptoms in patients with probable Alzheimer’s disease is dependent on the psychosis phenotype. Behav. Brain Funct. 2012; 8: 62. http://dx.doi.org/0.1186/1744-9081-8-62. PMID: 23270420

16. Salnikova L.E., Smelaya T.V., Moroz V.V., Golubev A.M., Rubanovich A.V. Host genetic risk factors for community-acquired pneumonia. Gene. 2013; 518 (2): 449—456. http://dx.doi.org/ 10.1016/j.gene.2012.10.027. PMID: 23107763

17. Salnikova L.E., Smelaya T.V., Moroz V.V., Golubev A.M., Rubanovich A.V. Functional polymorphisms in the CYP1A1, ACE, and IL-6 genes contribute to susceptibility to community-acquired and nosocomial pneumonia. Int. J. Infect. Dis. 2013; 17 (6): e433—e442. http://dx.doi.org/10.1016/j.ijid.2013.01.005. PMID: 23411129

18. Мороз В.В., Голубев А.М. Принципы диагностики ранних проявлений острого повреждения легких. Общая реаниматология. 2006; 2 (4): 5—7. http://dx.doi.org/10.15360/1813-9779-2006-4

19. Rambaldi D., Pece S., Di Fiore P.P. Bioconductor package to estimate proliferation in cell-tracking dye studies. Bioinformatics. 2014; 30 (14): 2060—2065. http://dx.doi.org/10.1093/bioinformatics/btu127. PMID: 24681909

20. Hamajima N. PCR–CTPP: a new genotyping technique in the era of genetic epidemiology. Expert Rev. Mol. Diagn. 2001; 1 (1): 119—123. PMID: 11901796

21. winSTAT.com 2003.1

22. Sole X., Guino E., Valls J., Iniesta R., Moreno V. SNPStats: a web tool for the analysis of association studies. Bioinformatics. 2006; 22 (15): 1928—1929. http://dx.doi.org/10.1093/bioinformatics/btl268. PMID: 16720584

23. Benjamini Y., Yekutieli D. Quantitative trait Loci analysis using the false discovery rate. Genetics. 2005; 171 (2): 783—790. http://dx.doi.org/10.1534/genetics.104.036699. PMID: 15956674

24. Storey J.D., Tibshirani R. Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. USA. 2003; 100 (16): 9440—9445. PMID: http://dx.doi.org/10.1073/pnas.1530509100.12883005

25. Abramson J.H. WINPEPI updated: computer programs for epidemiologists, and their teaching potential. Epidemiol. Perspect. Innov. 2011; 8 (1): 1. http://dx.doi.org/10.1186/1742-5573-8-1. PMID: 21288353

26. Jiang W., Welty S.E., Couroucli X.I., Barrios R., Kondraganti S.R., Muthiah K., Yu L., Avery S.E., Moorthy B. Disruption of the Ah receptor gene alters the susceptibility of mice to oxygen-mediated regulation of pulmonary and hepatic cytochromes P4501A expression and exacerbates hyperoxic lung injury. J. Pharmacol. Exp. Ther. 2004; 310 (2): 512—519. http://dx.doi.org/10.1124/jpet.103.059766. PMID: 15123765

27. Jiang W., Couroucli X.I., Wang L., Barrios R., Moorthy B. Augmented oxygen-mediated transcriptional activation of cytochrome P450 (CYP)1A expression and increased susceptibilities to hyperoxic lung injury in transgenic mice carrying the human CYP1A1 or mouse 1A2 promoter in vivo. Biochem. Biophys. Res. Commun. 2011; 407 (1): 79—85. http://dx.doi.org/10.1016/j.bbrc.2011.02.113. PMID: 21362406

28. Rotunno M., Yu K., Lubin J.H., Consonni D., Pesatori A.C., Goldstein A.M., Goldin L.R., Wacholder S., Welch R., Burdette L., Chanock S.J., Bertazzi P.A., Tucker M.A., Caporaso N.E., Chatterjee N., Bergen A.W., Landi M.T. Phase I metabolic genes and risk of lung cancer: multiple polymorphisms and mRNA expression. PLoS One. 2009; 4 (5): e5652. http://dx.doi.org/10.1371/journal.pone.0005652. PMID: 19479063

29. Wang S., Chanock S., Tang D., Li Z., Jedrychowski W., Perera F.P. Assessment of interactions between PAH exposure and genetic polymorphisms on PAH- DNA adducts in African American, Dominican and Caucasian mothers and newborns. Cancer Epidemiol. Biomarkers Prev. 2008; 17 (2): 405—413. http://dx.doi.org/10.1158/1055-9965. PMID: 18268125

30. Колесникова Л.И., Баирова Т.А., Первушина О.А. Гены ферментов антиоксидантной системы. Вестник РАМН. 2013; 12: 83—88. PMID: 24741948 29. Smart C.D., Mayton H., Mizubuti E.S., Willmann M.R., Fry W.E. Environmental and genetic factors influencing self-fertility in Phytophthora infestans. Phytopathology. 2000; 90 (9): 987—994. http://dx.doi.org/10.1094 /PHYTO.2000.90.9.987. PMID: 18944524

31. Zhang B., Beeghly-Fadiel A., Lu W., Cai Q., Xiang Y.B., Zheng Y., Long J., Ye C., Gu K., Shu X.O., Gao Y., Zheng W. Evaluation of functional genetic variants for breast cancer risk: results from the Shanghai breast cancer study. Am. J. Epidemiol. 2011; 173 (10): 1159—1170. http://dx.doi.org/10.1093/aje/kwr004. PMID: 21454829

32. Denison M.S., Nagy S.R. Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu. Rev. Pharmacol. Toxicol. 2003; 43: 309—334. PMID: 12540743

33. Busbee P.B., Rouse M., Nagarkatti M., Nagarkatti P.S. Use of natural AhR ligands as potential therapeutic modalities against inflammatory disorders. Nutr. Rev. 2013; 71 (6): 353—369. http://dx.doi.org/10. 1111/nure.12024. PMID: 23731446

34. Stockinger B. Beyond toxicity: aryl hydrocarbon receptormediated functions in the immune system. J. Biol. 2009; 8 (7): 61. http://dx.doi.org/10.1186/jbiol170. PMID: 19691822

35. Rohlman D., Pham D., Yu Z., Steppan L.B., Kerkvliet N.I. Aryl hydrocarbon receptor-mediated perturbations in gene expression during early stages of CD4(+) T-cell differentiation. Front. Immunol. 2012; 6 (3): 223. http://dx.doi.org/10.3389/fimmu.2012.00223. PMID: 22888330

36. Esser C., Rannug A. The aryl hydrocarbon receptor in barrier organ physiology, immunology, and toxicology. Pharmacol. Rev. 2015; 67 (2): 259—279. http://dx.doi.org/10.1124/pr.114.009001. PMID: 25657351

37. Gradman E.H. Evolving understanding of the renin–angiotensin–aldosterone system: pathophysiology and targets for therapeutic intervention. Am. Heart J. 2009; 157: S1—S6.

38. Rajagopalan S., Kurz S., Munzel T., Tarpey M., Freeman B.A., Griendling K.K., Harrison D.G. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J. Clin. Invest. 1996; 97 (8): 1916—1923. PMID: 8621776

39. Manzanares W., Dhaliwal R., Jiang X., Murch L., Heyland D.K. Antioxidant micronutrients in the critically ill: a systematic review and meta-analysis. Crit. Care. 2012; 16 (2): R66. http://dx.doi.org/10.1186/cc11316. PMID: 22534505

40. Zhou M.S., Schulman I.H., Raij L. Nitric oxide, angiotensin II, and hypertension. Semin. Nephrol. 2004; 24 (4): 366—378. PMID: 15252776 40. Ho R.H., Kim R.B. Transporters and drug therapy: implications for drug disposition and disease. Clin. Pharmacol. Ther. 2005; 78 (3): 260—277. PMID: 16153397

41. Zhou S.F. Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica. 2008; 38 (7—8): 802—832. http://dx.doi.org/10.1080/00498250701867889. PMID: 18668431

42. Weng L., Macciardi F., Subramanian A., Guffanti G., Potkin S.G., Yu Z., Xie X. SNP-based pathway enrichment analysis for genome-wide association studies. BMC Bioinformatics. 2011; 12: 99. http://dx.doi.org/10.1186/1471-2105-12-99. PMID: 21496265

43. Braun R., Buetow K. Pathways of distinction analysis: a new technique for multi-SNP analysis of GWAS data. PLoS Genet. 2011; 7 (6): e1002101. http://dx.doi.org/10.1371/journal.pgen.1002101. PMID: 21695280

44. Orfanos S.E., Armaganidis A., Glynos C., Psevdi E., Kaltsas P., Sarafidou P., Catravas J.D., Dafni U.G., Langleben D., Roussos C. Pulmonary capillary endothelium-bound angiotensin-converting enzyme activity in acute lung injury. Circulation. 2000; 102 (16): 2011—2018. http://dx.doi.org/10.1161/01.CIR.102.16.2011. PMID: 11034953

45. Мороз В.В., Голубев А.М., Кузовлев А.Н., Писарев В.М., Половников С.Г., Шабанов А.К., Голубев М.А. Сурфактантный протеин А (SP-A) — прогностический молекулярный биомаркер при остром респираторном дистресс-синдроме. Общая реаниматология. 2013; 9 (3): 5—13. http://dx.doi.org/10.15360/1813-9779-2013-3-5

46. Мороз В.В., Голубев А.М., Кузовлев А.Н., Писарев В.М. Новые диагностические кандидатные молекулярные биомаркеры острого респираторного дистресссиндрома. Общая реаниматология. 2014; 10 (4): 6—10. http://dx.doi.org/10.15360/1813-9779-2014-4-6-10

47. Мороз В.В., Голубев А.М., Кузовлев А.Н., Шабанов А.К., Писарев В.М. Белок клеток Клара (Club cell protein) — новый диагностический кандидатный молекулярный биомаркер при нозокомиальной пневмонии. Общая реаниматология. 2014; 10 (6): 6—14. http://dx.doi.org/10.15360/1813-9779-2014-6-6-14


Для цитирования:


Смелая Т.В., Кузовлев А.Н., Мороз В.В., Голубев А.М., Белопольская О.Б., Сальникова Л.Е. МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКИЕ МАРКЕРЫ НОЗОКОМИАЛЬНОЙ ПНЕВМОНИИИ ОСТРОГО РЕСПИРАТОРНОГО ДИСТРЕСС-СИНДРОМА. Общая реаниматология. 2015;11(3):24-38. https://doi.org/10.15360/1813-9779-2015-3-24-38

For citation:


Smelaya T.V., Kuzovlev A.N., Moroz V.V., Golubev A.M., Belopolskaya O.B., Salnikova L.E. Search for Common Molecular Genetic Markers of Nosocomial Pneumonia and Acute Respiratory Distress Syndrome. General Reanimatology. 2015;11(3):24-38. (In Russ.) https://doi.org/10.15360/1813-9779-2015-3-24-38

Просмотров: 640


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)