Microcirculatory Disorders in Infant Respiratory Distress Syndrome (Morphological Study)
https://doi.org/10.15360/1813-9779-2016-6-16-26
Abstract
The purpose of the study is to evaluate morphological changes in lung vessels of preterm infants with the infant respiratory distress syndrome (IRDS).
Material and Methods. Case history records and postmortem examination protocols of 70 preterm infants who died because of severe respiratory compromise as a result of IRDS were analyzed. All newborns were divided into three groups: the IRDS group included 25 (35.7%) infants who died due to IRDS (no surfactant); the Curosurf group was composed of 26 (37.2%) infants who received an exogenous surfactant Curosurf as a part of a complex therapy; the Surfactant BL group included 19 (27.1%) infants receiving Surfactant BL. Histological and morphometric examinations of lung vessels were performed. The Kernogan index calculated as the ratio between the lumen diameter and the wall thickness was determined.
Results. The arterial bed of newborns in the IRDS and Curosurf groups was composed of vessels having up to several μm in diameter. Larger arteries (51—100 μm in diameter) and arteries of more than 100 μm in diameter are distributed uniformly and comprise 1/3 of the total number of visualized vessels. The invert correlation of the arterial vascular bed was typical for the infants in the Surfactant BL group: arteries of 50 μm in diameter comprise 30% of all vessels, and arteries of more than 100 μm in diameter prevail. The venous bed of newborns consisted mainly of vessels having less than 50 μm in diameter. The greatest changes in the arterial wall thickness (ТСА) are typical for vessels with a total diameter of more than 51 μm. In babies of the IRDS group, the greatest (ТСА) changes were typical for arteries of 51—100 μm in diameter. Changes in arterial walls (>101 μm) were typical for the Surfactant BL group. Unlike other groups, in the Curosurf group, no significant changes in the parameters under the test were found (P>0.05). In this group (as compared to IRDS and Surfactant BL groups), there were minimal changes in vein characteristics and the minimal venous wall thickness (ТСv) (>100 μm in diameter). The Kernogan index for veins with small diameter was minimal.
Conclusion. Evaluation of the microcirculatory bed of lungs in IRDS patients is an urgent problem because the pulmonary gas exchange impairment in preterm infants is primarily caused by circulatory and microcirculatory disorders of various degrees of severity that result from anatomic and functional immaturity of the lung micro circulatory bed. In cases of unfavorable outcomes, dilation of arterial and venous lumen and vascular wall thickening might be considered as principal signs of microcirculatory disorders. Surfactants affect changes in the diameter of lumen of lung vessels, especially those with a diameter more than 50 μm, presumably improving the blood supply of the lungs. Minimal changes of tested parameters were typical for newborns on Curosurf versus IRDS and Surfactant BL groups of infants.
About the Authors
S. A. PerepelitsaRussian Federation
25 Petrovka Str., Build. 2, Moscow 107031;
14 Aleksandr Nevsky Str., Kaliningrad 236041
A. M. Golubev
Russian Federation
25 Petrovka Str., Build. 2, Moscow 107031
V. V. Moroz
Russian Federation
25 Petrovka Str., Build. 2, Moscow 107031
References
1. Baranov A.A., Namazova – Baranova L.S., Albitsky V.Yu., Terletskaya R.N. Tendentsii mladencheskoi smertnosti v Rossiiskoi Federatsii v 1990 2012 g.g. [Trends in infant mortality in the Russian Federation 1990 2012]. Vestnik RAMN. 2014; 11–12: 31–38. PMID: 25971124. [In Russ.]
2. Sweet D.G., Carnielli V., Greisen G., Hallman M., Ozek E., Plavka R., Saugstad O.D., Simeoni U., Speer C.P., Vento M., Halliday H.L.; European Association of Perinatal Medicine. European consensus guidelines on the management of neonatal respiratory distress syndrome in preterm infants – 2013 update. Neonatology. 2013; 103 (4): 353–368. http://dx.doi.org/10.1159/000349928. PMID: 23736015
3. Moroz V.V., Golubev A.M., Perepelitsa S.A. Respiratornyi distresssin drom novorozhdennykh. Patogenez, diagnostika, klinika, lechenie. [Newborn respiratory distress syndrome. Pathogenesis, diagnosis, clinical features, treatment]. Saarbruken: Palmarium Academic Publishing; 2014: 127. [In Russ.]
4. Kovtun O.P., Tsyvyan P.B. Prezhdevremennoe rozhdenie i program mirovanie zabolevanii. Vklad intensivnoi terapii. [Premature birth and disease programming. Contribution of neonatal intensive care]. Voprosy Sovremennoi Pediatrii. 2014; 13 (5): 26–30. http://dx.doi.org/10.15690/vsp.v13i5.1146. [In Russ.]
5. Lebedeva O.V., Chikina T.A. Faktory riska rannei neonatalnoi smertnosti u novorozhdennykh s ochen nizkoi i ekstremalno nizkoi massoi tela pri rozhdenii. [Risk factors for the early neonatal mortality in new borns with very low and extremely low birth weight]. Voprosy Sovremennoi Pediatrii. 2014; 13 (6): 35–39. http://dx.doi.org/10.15690/vsp.v13i6.1199. [In Russ.]
6. Ramanathan R. Surfactant therapy in preterm infants with respiratory distress syndrome and in nearterm of term newborns with acute RDS. J. Perinatol. 2006; 26 (Suppl 1): S51–S56. http://dx.doi.org/10.1038/sj.jp.7211474. PMID: 16625226
7. Fratto V.M., Ananth C.V., GyamfiBannerman C. Late preterm neonatal morbidity in hypertensive versus normotensive women. Hypertens Pregnancy. 2016; 35 (2): 241–249. http://dx.doi.org/10.3109/10641955.2016.1139720. PMID: 26930156
8. Ryzhanovsky B.Ya., Lebedko O.A. Formirovanie gialinovykh membran v legkikh belykh krys kak rezultat vozdeistviya bleomitsina v neonatalnom periode. [Formation of hyaline membranes in the lungs of white rats as a result of exposure to bleomycin in the neonatal period]. Byulleten Eksperimentalnoi Biologii i Meditsiny. 2015; 160 (9): 379–383. [In Russ.]
9. Perepelitsa S.A. Zamestitelnaya terapiya surfaktantom “Alveofakt” respiratornogo distresssindroma u novorozhdennykh (pilotnoe issledovanie). Obshchaya Reanimatologiya. [Replacement therapy with the surfactant alveofact for neonatal respiratory distress syndrome: a pilot study. General Reanimatology]. 2014; 10 (4): 44–50. http://dx.doi.org/10.15360/18139779201444450. [In Russ.]
10. Perepelitsa S.A., Luchina A.A. Ingalyatsionnaya surfaktantterapiya u novorozhdennykh pri iskusstvennoi ventilyatsii legkikh. Obshchaya Reanimatologiya. [Inhaled surfactant therapy in newborns in artificial lung ventilation. General Reanimatology]. 2014; 10 (5): 44–51. http://dx.doi.org/10.15360/18139779201454451. [In Russ.]
11. Reuter S., Moser C., Baack M. Respiratory distress in the newborn. Pediatr. Rev. 2014; 35 (10): 417–428. http://dx.doi.org/10.1542/pir.3510417. PMID: 252744969
12. Golubev A.M., Perepelitsa S.A., Smerdova E.F., Moroz V.V. Klinikomor fologicheskie osobennosti dykhatelnykh rasstroistv u nedonoshennykh novorozhdennykh. Obshchaya Reanimatologiya. [Clinical and morpho logical features of respiratory disorders in preterm neonates. General Reanimatology]. 2008; 4 (3): 49– 55. http://dx.doi.org/10.15360/181397792008349. [In Russ.]
13. Hermansen C.L., Mahajan A. Newborn respiratory distress. Am. Fam. Physician. 2015; 92 (11): 9941002. PMID: 26760414
14. Davydova I.V., Anikin A.V., Kustova O.V., Sidenko A.V., Basargina E.Yu., Pavlyukova E.V., Pozharishchenskaya V.K. Bronkholegochnaya dis plaziya v postsurfaktantnuyu eru: rezultaty obyektivnoi otsenki techeniya zabolevaniya. [Bronchopulmonary dysplasia in postsurfactant era: results of an objective assessment of the disease]. Voprosy Sovremennoi Pediatrii. 2015; 14 (4): 514–518. http://dx.doi.org/10.15690/vsp.v14.i4.1392. [In Russ.]
15. Porzionato A., Guidolin D., Macchi V., Sarasin G., Grisafi D., Tortorella C., Dedja A., Zaramella P., De Caro R. Fractal analysis of alveolarization in hyperoxiainduced rat models of bronchopulmonary dysplasia. Am. J. Physiol. Lung Cell Mol. Physiol. 2016; 310 (7): L680–L688. http://dx.doi.org/10.1152/ajplung.00231.2015. PMID: 26851258
16. Whitsett J.A., Weaver T.E. Alveolar development and disease. Am. J. Respir. Cell Mol. Biol. 2015; 53 (1): 1–7. http://dx.doi.org/10.1165/rcmb.20150128PS. PMID: 25932959
17. Truog W.E., Xu D., Ekekezie I.I., Mabry S., Rezaiekhaligh M., Svojanovsky S., Soares M.J. Chronic hypoxia and rat lung development: analysis by morphometry and directed microarray. Pediatr. Res. 2008; 64 (1): 56–62. http://dx.doi.org/10.1203/PDR.0b013e31817289f2.PMID: 18344904
18. van Heijst A., Haasdijk R., Groenman F., van der Staak F., Hulsbergenvan de Kaa C., de Krijger R., Tibboel D. Morphometric analysis of the lung vasculature after extracorporeal membrane oxygenation treatment for pulmonary hypertension in newborns. Virchows Arch. 2004; 445 (1): 36–44. http://dx.doi.org/10.1007/s004280041044y. PMID: 15175881
19. Iliodromiti Z., Zygouris D., Sifakis S., Pappa K.I., Tsikouras P., Salakos N., Daniilidis A., Siristatidis C., Vrachnis N. Acute lung injury in preterm fetuses and neonates: mechanisms and molecular pathways. J. Matern. Fetal. Neonatal. Med. 2013; 26 (17): 1696–1704. http://dx.doi.org/10.3109/14767058.2013.798284. PMID: 23611524
20. Brat R., Yousef N., Klifa R., Reynaud S., Shankar Aguilera S., De Luca D. Lung ultrasonography score to evaluate oxygenation and surfactant need in neonates treated with continuous positive airway pressure. JAMA Pediatr. 2015; 169 (8): e151797. http://dx.doi.org/10.1001/jamapediatrics.2015.1797. PMID: 26237465
21. Goldsmith L.S., Greenspan J.S., Rubenstein S.D., Wolfson M.R., Shaffer T.H. Immediate improvement in lung volume after exogenous surfactant: alveolar recruitment versus increased distention. J. Pediatr. 1991; 119 (3): 424–428. http://dx.doi.org/10.1016/S00223476(05)820578. PMID: 1880658
22. Sandberg K.L., Lindstrom D.P., Sjöqvist B.A., Parker R.A., Cotton R.B. Surfactant replacement therapy improves ventilation inhomogeneity in infants with respiratory distress syndrome. Pediatr. Pulmonol. 1997; 24 (5): 337–343. http://dx.doi.org/10.1002/(SICI)10990496(199711)24:5%3C337:: AID PPUL6%3E3.3.CO;2E. PMID: 9407567
23. Auten R.L., Notter R.H., Kendig J.W., Davis J.M., Shapiro D.L. Surfactant treatment of fullterm newborns with respiratory failure. Pediatrics. 1991; 87 (1): 101–107. PMID: 1984603
24. Clyman R.I., Jobe A., Heymann M., Ikegami M., Roman C., Payne B., Mauray F. Increased shunt through the patent ductus arteriosus after surfactant replacement therapy. J. Pediatr. 1982; 100 (1): 101–107. PMID: 6948942
25. Heldt G.P., Pesonen E., Merritt T.A., Elias W., Sahn D.J. Closure of the ductus arteriosus and mechanics of breathing in preterm infants after surfactant replacement therapy. Pediatr. Res. 1989; 25 (3): 305–310. http://dx.doi.org/10.1203/0000645019890300000020. PMID: 2649864
Review
For citations:
Perepelitsa S.A., Golubev A.M., Moroz V.V. Microcirculatory Disorders in Infant Respiratory Distress Syndrome (Morphological Study). General Reanimatology. 2016;12(6):16-26. (In Russ.) https://doi.org/10.15360/1813-9779-2016-6-16-26