Hemoglobin: Modification, Crystallization, Polymerization (Review)
https://doi.org/10.15360/1813-9779-2016-6-49-63
Abstract
The purpose of this review is to present the most significant modifications and transformations of a hemoglobin molecule potentially related to developing a strategy of resuscitation and treatment of lifethreatening forms of anemia. Hemoglobin is one of the wellstudied proteins. The paper reviews the history of hemoglobin studies from 1839 untill present. Methodically, the hemoglobin studies included electrophoresis, spectrophotometric method, Xray diffraction method, atomicforce microscopy. The basic forms of hemoglobin include oxyhemoglobin, deoxyhemoglobin and methemoglobin. Data on protein crystallization and polymerization are discussed. Many forms of hemoglobin have the ability to form crystals or polymers in vitro, some pathological forms can be modified in vivo. The studies of structural features of various hemoglobin forms represent a contemporary task for fundamental researches.
About the Authors
V. A. SergunovaRussian Federation
25 Petrovka Str., Build. 2, Moscow 107031
E. A. Manchenko
Russian Federation
25 Petrovka Str., Build. 2, Moscow 107031
1 Universitetskaya Plaza, Moscow 119234
O. Ye. Gudkova
Russian Federation
25 Petrovka Str., Build. 2, Moscow 107031
References
1. Antonov V.F., Chernysh A.M., Kozlova E.K. Fizika I biofizika. [Physics and biophysics]. Moscow: GEOTARMedia; 2015: 472. [In Russ.]
2. Blyumenfeld L.A. Gemoglobin. [Hemoglobin]. Sorosovsky Obrazovatelnyi Zhurnal. 1998; 4: 33–38. [In Russ.]
3. Giege R. A historical perspective on protein crystallization from 1840 to the present day. FEBS J. 2013; 280 (24): 6456–6497. http://dx.doi.org/10.1111/febs.12580. PMID: 24165393
4. Schechter A.N. Hemoglobin research and the origins of molecular medicine. Blood. 2008; 112 (10): 3927–3938. http://dx.doi.org/10.1182/blood200804078188. PMID: 18988877
5. Thoreson C.K., O’Connor M.Y., Ricks M., Chung S.T., Sumner A.E. Sickle cell trait from a metabolic, renal, and vascular perspective: linking history, knowl edge, and health. J. Racial. Ethn. Health Disparities. 2015; 2 (3): 330–335. http://dx.doi.org/10.1007/s4061501400774. PMID: 26322267
6. Hardison R.C. Evolution of hemoglobin and its genes. Cold Spring Harb. Perspect. Med. 2012; 2 (12): a011627. http://dx.doi.org/10.1101/cshperspect.a011627. PMID: 23209182
7. Volkenshtein M.V. Molekulyarnaya biofizika. [Molecular biophysics]. Moscow: Nauka; 1975: 616. [In Russ.]
8. Winter W.P. A brief history of sickle cell disease. http://www.sicklecell.howard.edu/ABriefHistoryofSickleCellDisease.htm
9. Gormley M. It’s in the blood: the varieties of Linus Pauling’s work on hemoglobin and sickle cell anemia. http://scarc.library.oregonstate.edu/
10. Frenette P.S., Atweh G.F. Sickle cell disease: old discoveries, new concepts, and future promise. J. Clin. Invest. 2007; 117 (4): 850–858. http://dx.doi.org/10.1172/JCI30920. PMID: 17404610
11. Bender M.A., Douthitt Seibel G. Sickle cell disease. Gene Reviews. 2003; 1993–2016. PMID: 20301551
12. Ralstrom E., da Fonseca M.A., Rhodes M., Amini H. The impact of sick le cell disease on oral healthrelated quality of life. Pediatr. Dent. 2014; 36 (1): 24–28. PMID: 24717705
13. Bookchin R.M., Balazs T., Wang Z., Josephs R., Lew V.L. Polymer structure and solubility of deoxyhemoglobin S in the presence of high concentrations of volumeexcluding 70kDa dextran. Effects of nons hemoglobins and inhibitors. J. Biol. Chem. 1999; 274 (10): 6689–6697. PMID: 10037766
14. Wilson S., Makinen M. Electron microscope study of the kinetics of the fibertocrystal transition of sickle cell hemoglobin. Proc. Natl. Acad. Sci. USA. 1980; 77 (2): 944–948. http://dx.doi.org/10.1073/pnas.77.2.944. PMID: 6928690
15. Fabry M.E. Detection of hemoglobin S polymerization in intact red cells by P31 NMR. Biochem. Biophys. Res. Commun. 1980; 97 (4): 1399–1406. http://dx.doi.org/10.1016/S0006291X(80)800222.PMID: 7213366
16. Fabry M.E., Kaul D.K., Raventos C., Baez S., Rieder R., Nagel R.L. Some aspects of the pathophysiology of homozygous HbCC erythrocytes. J. Clin. Invest. 1981; 67 (5): 1284–1291. PMID: 7229029
17. FeelingTaylor A.R., Yau S.T., Petsev D.N., Nagel R.L., Hirsch R.E., Vekilov P.G. Crystallization mechanisms of hemoglobin C in the R state. Biophys. J. 2004; 87 (4): 2621–2629. http://dx.doi.org/10.1529/biophysj.104.039743. PMID: 15454456
18. Baptista L.C., Costa M.L., Ferreira R., Albuquerque D.M., Lanaro C., Fertrin K.Y., Surita F.G., Parpinelli M.A., Costa F.F., Melo M.В. Abnormal expression of inflammatory genes in placentas of women with sickle cell anemia and sickle hemoglobin C disease. Ann. Hematol. 2016; 95 (11): 1859–1867. http://dx.doi.org/ 10.1007/s0027701627801.PMID: 27546026
19. Bain B.J. Hemoglobin C disease. Am. J. Hematol. 2015; 90 (2): 174. http://dx.doi.org/10.1002/ajh.23915. PMID: 25488433
20. Steinberg M.H., Chui D.H. HbC disorders. Blood. 2013; 122 (22): 3698. http://dx.doi.org/10.1182/blood201309526764. PMID: 24263962
21. Dalia S., Zhang L. Homozygous hemoglobin C disease. Blood. 2013; 122 (10): 1694. http://dx.doi.org/10.1182/blood201304498188. PMID: 24137818
22. Kozlova E., Chernysh A., Moroz V., Sergunova V., Zavialova A., Kuzovlev A. Nanoparticles of perfluorocarbon emulsion contribute to the reduction of methemoglobin to oxyhemoglobin. Int. J. Pharm. 2016; 497 (1–2); 88–95. http://dx.doi.org/ 10.1016/j.ijpharm.2015.11.035. PMID: 26626224
23. Safo M.K., Abraham D.J. Xray crystallography of hemoglobins. Hemoglobin disorders. Methods Mol. Biol. 2003; 82: 119. http://dx.doi.org/10.1385/1592593739:001
24. Perutz M.F. Preparation of haemoglobin crystals. J. Cryst. Growth. 1968; 2 (1); 54–56. http://dx.doi.org/10.1016/00220248(68)900717
25. Parashar V., Jeffrey P.D., Neiditch M.B. Conformational change induced repeat domain expansion regulates rap phosphatase quorum sensing signal receptors. PLoS Biol. 2013; 11 (3): e1001512. http://dx.doi.org/10.1371/journal.pbio.1001512. PMID: 23526881
26. Shultis D., Dodge G., Zhang Y. Crystal structure of designed PX domain from cytokineindependent survival kinase and implications on evolutionbased protein engineering. J. Struct. Biol. 2015; 191 (2): 197–206. http://dx.doi.org/10.1016/j.jsb.2015.06.009. PMID: 26073968
27. Martiny V.Y., Carbonell P., Lagorce D., Villoutreix B.O., Moroy G., Miteva M.A. In silico mechanistic profiling to probe small molecule binding to sulfotransferases. PloS One. 2013; 8 (9): e73587. http://dx.doi.org/10.1371/journal.pone.0073587. PMID: 24039991
28. Moroz V.V., Kozlova E.K., Chernysh A.M., Gudkova O.E., Bushueva A.V. Izmenenie struktury membran eritrotsitov pri deistvii gemina. Obshchaya Reanimatologiya. [Hemininduced changes in the red blood cell membrane structure. General Reanimatology]. 2012; 8 (6): 5–10. http://dx.doi.org/10.15360/1813977920126. [In Russ.]
29. Kozlova E., Chernysh A., Moroz V., Gudkova O., Sergunova V., Kuzovlev A. Transformation of membrane nanosurface of red blood cells under hemin action. Sci. Rep. 2014; 4; 6033. http://dx.doi.org/10.1038/srep06033. PMID: 25112597
30. Wood B.R., AsghariKhiavi M., Bailo E., McNaughton D., Deckert V. Detection of nanooxidation sites on the surface of hemoglobin crystals using tipenhanced raman scattering. Nano Lett. 2012; 12 (3): 1555–1556. http://dx.doi.org/10.1021/nl2044106. PMID: 22324311
31. Golubev A.M., Moroz V.V., Kozlova E.K., Sergunova V.A., Gudkova O.E., Golubev M.A., Kalinichenko V.N., Chernysh A.M. Nanostruktura intimy aorty cheloveka pri razvitii ateroskleroza (poiskovoeksperimentalnoe issledovanie). Obshchaya Reanimatologiya. [Nanostructure of human aortic intima in atherosclerosis (a pilot study). General Reanimatology]. 2016; 12 (5): 8–15. http://dx.doi.org/10.15360/1813977920165818. [In Russ.]
32. Sergunova V.A., Kozlova E.K., Myagkova E.A., Chernysh A.M. Izmerenie uprugoelastichnykh svoistv membrany nativnykh eritrotsitov in vitro. Obshchaya Reanimatologiya. [In vitro measurement of the elastic properties of the native red blood cell membrane. General Reanimatology]. 2015; 11 (3): 3944. http://dx.doi.org/10.15360/1813977920153.[In Russ.]
33. Chernysh A.M., Belopakhov D.S., Belyaevskaya A.A., Zakaryan A.V., Kupriyanova M.S., Postnikov M.A., Sergeyenko E.V., Shogenov I.M. Nauchnyi praktikum dlya studentov po spetsialnosti “meditsinskaya fizika”. Obshchaya Reanimatologiya. [Scientific practicum for students of the specialty «Medical biophysics». General Reanimatology]. 2016; 12 (4): 79–88. http://dx.doi.org/10.15360/1813977920164. [In Russ.]
34. Moroz V.V., Chernysh A.M., Kozlova E.K., Sergunova V.A., Gudkova O.E., Fedorova M.S., Kirsanova A.K., Novoderzhkina I.S. Narushenie nanostruktury membran eritrotsitov pri ostroi krovopotere i ikh korrektsiya perftoruglerodnoi emulsiei. Obshchaya Reanimatologiya. [Impairments in the nanostructure of red blood cell membranes in acute blood loss and their correction with perfluorocarbon emulsion. General Reanimatology]. 2011; 7 (2): 5–9. http://dx.doi.org/10.15360/1813977920112. [In Russ.]
35. Kozlova E.K., Chernysh A.M., Moroz V.V., Kuzovlev A.N., Sergunova V.A. Deistvie ionov tsinka na membrany krasnykh kletok krovi in vitro. [Influence of zinc ions on the membranes of red blood cells in vitro]. Meditsinskaya Fizika. 2011; 4: 43–49. [In Russ.]
36. Perepelitsa S.А., Sergunova V.A., Gudkova O.E., Alekseyeva S.V. Osobennosti membran eritrotsitov nedonoshennykh novorozhden nykh pri mnogoplodnoi beremennosti. Obshchaya Reanimatologiya. [The specific features of red blood cell membranes in premature neonates due to multiple pregnancy. General Reanimatology]. 2014; 10 (1): 12–18. http://dx.doi.org/10.15360/1813977920141. [In Russ.]
37. Moroz V.V., Chernysh A.M., Kozlova E.K., Sergunova V.A., Gudkova O.E., Khoroshilov S.E., Onufrievich A.D., Kostin A.I. Narusheniya morfologii i nanostruktury membran eritrotsitov pri dlitelnom khranenii eritrotsitarnoi vzvesi (issledovanie pri pomoshchi atomnoi silovoi mikroskopii). [Disorders in the morphology and nanostructure of erythrocyte membranes after longterm storage of erythrocyte suspension (atomic force microscopy study)]. Byulleten Eksperimentalnoi Biologii i Meditsiny. 2015; 159 (3): 406–410. http://dx.doi.org/10.1007/s1051701529759. PMID: 26212816. [In Russ.]
38. Perepelitsa S.А., Sergunova V.A., Alekseyeva S.V., Gudkova O.E. Morfologiya eritrotsitov pri izoimmunizatsii novorozhdennykh po rezusfaktoru I avosisteme. Obshchaya Reanimatologiya. [Erythrocyte morphology in neonatal rhesus factor and ABO isoimmunization. General Reanimatology]. 2015; 11 (2): 25–34. http://dx.doi.org/10.15360/18139779201522534. [In Russ.]
39. Nagel R.L., Fabry M.E., Steinberg M.H. The paradox of hemoglobin SC disease. Blood Rev. 2003; 17 (3): 167–178. http://dx.doi.org/10.1016/S0268960X(03)000031. PMID: 12818227
40. Hirsch R.E., Samuel R.E., Fataliev N.A., Pollack M.J., Galkin O., Vekilov P.G., Nagel R.L. Differential pathways in oxy and deoxy HbC aggrega tion/crystallization. Proteins. 2001; 42 (1): 99–107. http://dx.doi.org/10.1002/10970134(20010101)42:1%3C99::AIDPROT100%3E3.0.CO;2R. PMID: 11093264
41. Leunissen M.E. Protein crystallization. Nijmegen University; 2001: 44.
42. Ketchum M.A., Olafson K.N., Petrova E.V., Rimer J.D., Vekilov P.G. Hematin crystallization from aqueous and organic solvents. J. Chem. Phys. 2013; 139 (12): 121911. http://dx.doi.org/10.1063/1.4816106.PMID: 24089723
43. Hekmat D. Largescale crystallization of proteins for purification and formulation. Bioprocess. Biosyst. Eng. 2015; 38 (7): 1209–1231. http://dx.doi.org/10.1007/s004490151374y. PMID: 25700885
44. Boor A.K. A crystallographic study of pure carbonmonoxide hemoglobin. J. Gen. Physiol. 1930; 13 (3): 307–316. PMID: 19872525
45. Bessie M., Weed R.I., Leblond P.F. (eds.). Red blood cell shapes: physiology, pathology, ultrastructure. Berlin, Heidelberg, New York: Springer; 1973: 147.
46. Kozlova E., Chernysh A., Moroz V., Sergunova V., Gudkova O., Fedorova M., Kuzovlev A. Opposite effects of electroporation of red blood cell membranes under the influence of zinc ions. Acta Bioeng. Biomech. 2012; 14 (1): 3–13. PMID: 22741531
47. Strasser B.J. Collecting, comparing, and computing sequences: the making of Margaret O. Dayhoff’s Atlas of Protein Sequence and Structure, 19541965. J. Hist. Biol. 2010; 43 (4): 623–660. http://dx.doi.org/10.1007/s1073900992210. PMID: 20665074
48. Arie T., Fairhurst R.M., Brittain N.J., Wellems T.E., Dvorak J.A. Hemoglobin C modulates the surface topography of Plasmodium falci paruminfected erythrocytes. J. Struct. Biol. 2005; 150 (2): 163–169. http://dx.doi.org/10.1016/j.jsb.2005.02.008. PMID: 15866739
49. Pumphrey J.G., Steinhardt J. Crystallization of sickle hemoglobin from gently agitated solutions an alternative to gelation. J. Mol. Biol. 1977; 112 (3): 359–375. http://dx.doi.org/10.1016/S00222836(77)801873. PMID: 875023
Review
For citations:
Sergunova V.A., Manchenko E.A., Gudkova O.Ye. Hemoglobin: Modification, Crystallization, Polymerization (Review). General Reanimatology. 2016;12(6):49-63. https://doi.org/10.15360/1813-9779-2016-6-49-63