Preview

General Reanimatology

Advanced search

Comparative Aspects of the Regulation of Cutaneous and Cerebral Microcirculation During Acute Blood Loss

https://doi.org/10.15360/1813-9779-2017-6-18-27

Abstract

Objective. Using laser Doppler flowmetry (LDF) and wavelet-analysis of microvascular blood flow oscillations to determine the features of regulation of cutaneous and cerebral microhemocirculation at early stages of acute fixed volume blood loss.

Materials and methods.Experiments were carried out on 31 male outbred rats weighing 300 g to 400 g. The animals were anesthetized by intraperitoneal injection of pentobarbital (45 mg/kg). The tail artery was catheterized for invasive measurement of mean blood pressure (BP) and blood withdrawal. The LDF method (ЛАКК-02 device, LAZMA, Russia) was used to record microvascular blood flow simultaneously in the right ear and the pial vessels of the left parietal region. An acute fixed-volume hemorrhage model was used. The target blood loss volume was 30% of the total blood volume (TBV). Within 10 minutes after the end of hemorrhage (posthemorrhagic period), the blood pressure and the LDF-gram were recorded. The following LDF-gram parameters were analyzed: the mean value of IP; the maximum amplitude of blood flow oscillations (Amax) and the corresponding frequency (Fmax) in the frequency band 0.01—0.4 Hz. Statistical processing of the data was performed using Statistica 7.0.

Results. At baseline, the values of IP, Аmax and Fmax in the brain were higher than in the skin. At posthemorrhagic period, BP decreased, on average, from 105 to 41 mm Hg. Against this background, IP in the skin decreased by 65%, while in the brain it reduced only by 17%, as compared with the baseline values (P0,0001). In the same time these organs were characterized by a unidirectional dynamics of patterns of fluxmotion. In both investigated organs, Amax increased sharply, and Fmax decreased. In posthemorrhagic period, fluxmotion not only «slowed down», but was also synchronized in a relatively narrow frequency band: for the skin Fmax was about 0.04 Hz (at the border of the endothelial and neurogenic band), for the brain about 0.09 Hz (neurogenic range).

Conclusion. Acute blood loss at a volume of 30% of TBV is accompanied by the unidirectional dynamics of changes in the amplitude and frequency characteristics of cutaneous and cerebral blood flow oscillations: an increase in the amplitude, slowing down and synchronization of the fluxmotion in a narrow frequency band. The results of present study and literature data allow assuming that during hypotension, the mechanisms for reducing the dominant fluxmotion pattern frequency are associated with a decrease in pressure on the vessel walls, while an increase in amplitude is associated with the activation of the sympathoadrenal system.

About the Authors

I. A. Ryzhkov
V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology.
Russian Federation
25 Petrovka Str., Build. 2, Moscow 107031.


Yu. V. Zarzhetsky
V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology.
Russian Federation
25 Petrovka Str., Build. 2, Moscow 107031.


I. S. Novoderzhkina
V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology.
Russian Federation
25 Petrovka Str., Build. 2, Moscow 107031.


References

1. Moroz V.V., Ryzhkov I.A. Acute blood loss: regional blood flow and microcirculation (review, part I). Obshchaya Reanimatologiya=General Reanimatology. 2016; 12 (2): 66-89. DOI: 10.15360/1813-9779-2016-2-56-65. [In Russ., In Engl.]

2. Moroz V.V., Ryzhkov I.A. Acute blood loss: regional blood flow and microcirculation (review, part II). Obshchaya Reanimatologiya=General Reanimatology. 2016; 12 (5): 65-94. DOI: 10.15360/1813-9779-2016-5-65-94. [In Russ., In Engl.]

3. Kerger H., Waschke K.F., Ackern K.V., Tsai A.G., Intaglietta M. Systemic and microcirculatory effects of autologous whole blood resuscitation in severe hemorrhagic shock. Am. J. Physiol. 1999; 276 (6 Pt 2): H2035-H2043. PMID: 10362685

4. Kosovskikh A.A., Churlyaev Yu.A., Kan S.L., Lyzlov A.N., Kirsanov T.V., Vartanyan A.R. Central hemodynamics and microcirculation in critical conditions. Obshchaya Reanimatologiya=General Reanimatology. 2013; 9 (1): 18-22. DOI: 10.15360/1813-9779-2013-1-18. [In Russ., In Engl.]

5. Tuor U.I., Farrar J.K. Pial vessel caliber and cerebral blood flow during hemorrhage and hypercapnia in the rabbit. Am. J. Physiol. 1984; 247 (1 Pt 2): H40-H51. PMID: 6742212

6. Wan Z., Sun S., Ristagno G., Weil M.H., Tang W. The cerebral microcirculation is protected during experimental hemorrhagic shock. Crit. Care Med. 2010; 38 (3): 928-932. DOI: 10.1097/CCM.0b013e3181cd100c. PMID: 20068466

7. Kovach A.G. Cerebral circulation in hypoxia and ischemia. Prog. Clin. Biol. Res. 1988; 264: 147-158. PMID: 3289019

8. Sharma A.C., Singh G., Gulati A. Decompensation characterized by decreased perfusion of the heart and brain during hemorrhagic shock: role of endothelin-1. J. Trauma. 2002; 53 (3): 531-536. DOI: 10.1097/01.TA. 0000019797.30036.3F. PMID: 12352492

9. Krupatkin A.I. Fluctuations in blood flow — a new diagnostic study of the language in the microcirculation. Regionarnoe Krovoobrashchenie i Mikrotsirkulyatsiya. 2014; 13 (1): 83-99. [In Russ.]

10. Ryzhkov I.A., Novoderzhkina I.S., Zarzhetsky Yu.V. Effect of perfluorane on the regulation of skin blood flow in acute blood loss (an experimental study). Obshchaya Reanimatologiya=General Reanimatology. 2015; 11 (6): 19-27. DOI: 10.15360/1813-9779-2015-6-19-27. [In Russ., In Engl.]

11. Aleksandrin V.V. The change of wavelet spectrum during autoregulation of cerebral blood flow. Regionarnoe Krovoobrashchenie i Mikrotsirkulyat-siya. 2013; 12 (3): 47-52. [In Russ.]

12. Ryzhkov I.A., Novoderzhkina I.S., Zarzhetsky Yu.V. Effect of perfluorane on the amplitude-frequency spectrum of fluctuations in cerebral blood flow in hemorrhagic hypotension and during the reperfusion period. Ob-shchaya Reanimatologiya=General Reanimatology. 2015; 11 (4): 14-22. DOI: 10.15360/1813-9779-2015-4-14-22. [In Russ., In Engl.]

13. Krupatkin A.I., Sidorov V.V. Functional diagnosis of the state of microcirculatory tissue systems: fluctuations, information, nonlinearity. Moscow: LIBROKOM; 2013: 496. [In Russ.]

14. Kozlov V.I., Azizov G.A., Gurova O.A., Litvin F.B. Laser Doppler flowmetry in assessing the condition and disorder of blood microcirculation. Methodological manual for doctors. Moscow: RUDN; 2012: 32. [In Russ.]

15. Stefanovska A., Bracic M., Kvernmo H.D. Wavelet analysis of oscillations in the peripheral blood circulation measured by laser Doppler technique. IEEE Trans. Biomed. Eng. 1999; 46 (10): 1230-1239. DOI: 10.1109/10.790500. PMID: 10513128

16. Borgstrom P., Schmidt J.A., Bruttig S.P., Intaglietta M., Arfors K.E. Slow-wave flowmotion in rabbit skeletal muscle after acute fixed-volume hemorrhage. Circ. Shock. 1992; 36 (1): 57-61. PMID: 1551185

17. Li Z., Tam E.W., Kwan M.P., Mak A.F., Lo S.C., Leung M.C. Effects of prolonged surface pressure on the skin blood flowmotions in anaesthetized rats—an assessment by spectral analysis of laser Doppler flowmetry signals. Phys. Med. Biol. 2006; 51 (10): 2681-2694. DOI: 10.1088/0031-9155/51/10/020. PMID: 16675876

18. Aleksandrin V.V. Wavelet-analysis of cerebral blood flow of rats.Regionar-noe Krovoobrashchenie i Mikrotsirkulyatsiya. 2010; 9 (4): 63-66. [In Russ.]

19. Fulop A., Turoczi Z., Garbaisz D., Harsanyi L., Szijarto A. Experimental models of hemorrhagic shock: a review. Eur. Surg. Res. 2013; 50 (2): 5770. DOI: 10.1159/000348808. PMID: 23615606

20. Wang-Fischer Y. (ed.). Manual of stroke models in rat. Boca Raton (FL): CRC Press; 2009.

21. Karkishchenko N.N., Grachev S.V.A handbook on laboratory animals and alternative models in biomedical studies. Moscow: Profil — 2C; 2010: 358. [In Russ.]

22. Bajrovic F., Cencur M., Hozic M., Ribaric S., Stefanovska A. The contribution of lumbar sympathetic neurones activity to rat skin blood flow oscillations. Pflugers Arch. 2000; 439 (Suppl): R158-R160. DOI: 10.1007/s004240000129. PMID: 10653176

23. Morman D., Heller L. Physiology of the cardiovascular system. Sankt-Peterburg: Piter; 2000: 256. [In Russ.]

24. Paulson O.B., Strandgaard S., Edvinsson L.Cerebral autoregulation. Cere-brovasc. Brain Metab. Rev. 1990; 2 (2): 161-192. PMID: 2201348

25. Jones S.C., Radinsky C.R., Furlan A.J., Chyatte D., Perez-Trepichio A.D. Cortical NOS inhibition raises the lower limit of cerebral blood flow-arterial pressure autoregulation. Am. J. Physiol. 1999; 276 (4 Pt 2): H1253-H1262. PMID: 10199850

26. Preckel M.P., Leftheriotis G., Ferber C., Degoute C.S., Banssillon V., Saumet J.L. Effect of nitric oxide blockade on the lower limit of the cortical cerebral autoregulation in pentobarbital-anaesthetized rats. Int. J. Microcirc. Clin. Exp. 1996; 16 (6): 277-283. DOI: 10.1159/000179186. PMID: 9049705

27. Ryzhkov I.A., Kirsanova A.K., Zarzhetsky Y.V. The amplitude and frequency spectrum of cerebral blood flow fluctuations in hemorrhagic shock. Obshchaya Reanimatologiya=General Reanimatology. 2014; 10 (2): 6-17. DOI:10.15360/1813-9779-2014-2-6-17. [In Russ., In Engl.]

28. Ryzhkov I.A., Novoderzhkina I.S., Zarzhetsky Y.V.The amplitude and frequency spectrum of skin blood flow fluctuations in acute blood loss (an experimental study). Obshchaya Reanimatologiya=General Reanimatology. 2014; 10 (5): 617. DOI: 10.15360/1813-9779-2014-5-6-17. [In Russ., In Engl.]

29. Aalkj&r C., Boedtkjer D., Matchkov V. Vasomotion — what is currently thought? Acta Physiol. (Oxf.). 2011; 202 (3): 253-269. DOI: 10.1111/j. 1748-1716.2011.02320.x. PMID: 21518271

30. Intaglietta M. Vasomotion and flowmotion: physiological mechanisms and clinical evidence. Vasc. Med. 1990; 1: 101 — 112. DOI: 10.1177/ 1358836X9000100202

31. Goldman D., Popel A.S. A computational study of the effect of vasomotion on oxygen transport from capillary networks. J. Theor. Biol. 2001; 209 (2): 189-199. DOI: 10.1006/jtbi.2000.2254. PMID: 11401461

32. Sakurai T., Terui N. Effects of sympathetically induced vasomotion on tissue-capillary fluid exchange. Am. J. Physiol. Heart Circ. Physiol. 2006; 291 (4): H1761-H1767. DOI: 10.1152/ajpheart.00280.2006. PMID: 16731646

33. SchmidtJA., Borgstrom P., IntagliettaM. Neurogenic modulation of periodic hemodynamics in rabbit skeletal muscle. J. Appl. Physiol (1985). 1993; 75 (3): 1216-1221. PMID: 8226532

34. Borovik A., Golubinskaya V., Tarasova O., Aalkjaer C., Nilsson H. Phase resetting of arterial vasomotion by burst stimulation of perivascular nerves. J. Vasc. Res. 2005; 42 (2): 165-173. DOI: 10.1159/000084405. PMID: 15767763

35. Morita Y., Hardebo J.E., Bouskela E. Influence of cerebrovascular sympathetic, parasympathetic, and sensory nerves on autoregulation and spontaneous vasomotion. Acta Physiol. Scand. 1995; 154 (2): 121-130. DOI: 10.1111/j.1748-1716.1995.tb09894.x. PMID: 7572208


Review

For citations:


Ryzhkov I.A., Zarzhetsky Yu.V., Novoderzhkina I.S. Comparative Aspects of the Regulation of Cutaneous and Cerebral Microcirculation During Acute Blood Loss. General Reanimatology. 2017;13(6):18-27. (In Russ.) https://doi.org/10.15360/1813-9779-2017-6-18-27

Views: 818


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)