Preview

General Reanimatology

Advanced search

Nonlinear Local Deformations of Erythrocyte Membranes: Normal Erythrocytes (Part 1)

https://doi.org/10.15360/1813-9779-2017-5-58-68

Abstract

Investigation of mechanical properties of erythrocyte membranes is a pressing issue in practical reanimatology and rehabilitation, because erythrocyte's ability to deform determines the possibility of their passage through capillary network and blood rheology in general.

The purpose of the work: to study the process of nonlinear deformation of membranes of normal erythrocytes by the method of atomic force spectroscopy.

Materials and Methods. The local stiffness of erythrocyte membranes was studied: that of diskocytes — on the torus and on the depression, that of planocytes — on the cell surface. Аtomic force spectroscopy was used for cell membrane study.

Results. The nonlinear deformation process was described by functions h(z), h/z (h), and μ(h). This set of functions describes in full the process of probe incorporation (submergence) into membranes. It has been shown that stepwise dependencies of the stiffness coefficient of membrane segments differ significantly and depend on its condition.

Conclusion. The suggested approach may be used in fundamental and clinical studies of blood cells' properties in the norm and different diseases. The method of recording nonlinear deformations may be especially efficient in the reanimatology and rehabilitation practice. 

About the Authors

A. M. Chernysh
V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology; I. M. Setchenov First Moscow State Medical University, Ministry of Health of Russia
Russian Federation

25 Petrovka Str., Build. 2, Moscow 107031;

8, Trubetskaya Str., Build. 2, Moscow 119991



E. K. Kozlova
V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology; I. M. Setchenov First Moscow State Medical University, Ministry of Health of Russia
Russian Federation

25 Petrovka Str., Build. 2, Moscow 107031;

8, Trubetskaya Str., Build. 2, Moscow 119991



V. V. Moroz
V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation
25 Petrovka Str., Build. 2, Moscow 107031


V. A. Sergunova
V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation
25 Petrovka Str., Build. 2, Moscow 107031


O. E. Gudkova
V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation
25 Petrovka Str., Build. 2, Moscow 107031


A. P. Kozlov
I. M. Setchenov First Moscow State Medical University, Ministry of Health of Russia
Russian Federation
8, Trubetskaya Str., Build. 2, Moscow 119991


E. A. Manchenko
V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation
25 Petrovka Str., Build. 2, Moscow 107031


References

1. Khromova V.S., Myshkin A.E. Coagulation of zinc-modified hemoglobin. Rus. J. Gen. Chem. 2002; 72 (10): 1645–1649. DOI: 10.1023/A:1023356221708. [In Russ., In Engl.]

2. Gudkova O.Ye., Bushueva A.V., Kozlov A.P., Chernysh A.M. Nanostructure and local rigidity of red blood cells (RBC) under influence of membrane modificators and ionizing radiation. Conf. Proc. CLINAM. 2013; 6: 172-173.

3. Moroz V.V., Chernysh A.M., Kozlova E.K., Borshegovskaya P.Y., Bliznjuk U.A., Rysaeva R.M., Gudkova O.Y. Comparison of red blood cell membrane microstructure after different physicochemical influences: atomic force microscope research. J. Crit. Care. 2010; 25 (3): 539.e1-539.e12. DOI: 10.1016/j.jcrc.2010.02.007. PMID: 20381299

4. Roduit C., van der Goot F.G., De Los Rios P., Yersin A., Steiner P., Dietler G., Catsicas S., Lafont F., Kasas S. Elastic membrane heterogeneity of living cells revealed by stiff nanoscale membrane domains. Biophys. J. 2008; 94 (4): 1521-1532. DOI: 10.1529/biophysj.107.112862. PMID: 17981897

5. Voïtchovsky K., Antoranz Contera S., Kamihira M., Watts A., Ryan J.F. Differential stiffness and lipid mobility in the leaflets of purple membranes. Biophys. J. 2006; 90 (6): 2075-2085. DOI: 10.1529/biophysj.105.072405. PMID: 16387758

6. Kuznetsova T.G., Starodubtseva M.N., Yegorenkov N.I., Chizhik S.A., Zhdanov R.I. Atomic force microscopy probing of cell elasticity. Micron. 2007; 38 (8): 824–833. DOI: 10.1016/j.micron.2007.06.011. PMID: 17709250

7. Rabinovich Y.I., Daosukho S., Byer K.J., El-Shall H.E., Khan S.R. Direct AFM measurements of adhesion forces between calcium oxalate monohydrate and kidney epithelial cells in the presence of Ca2+ and Mg2+ ions. J. Colloid. Interface Sci. 2008; 325 (2): 594-601. DOI: 10.1016/j.jcis.2008.06.024. PMID: 18619606

8. Bálint Z., Krizbai I.A., Wilhelm I., Farkas A.E., Párducz A., Szegletes Z., Váró G. Changes induced by hyperosmotic mannitol in cerebral endothelial cells: an atomic force microscopic study. Eur. Biophys. J. 2007; 36 (2): 113-120. DOI: 10.1007/s00249-006-0112-4. PMID: 17115151

9. Kasas S., Dietler G. Probing nanomechanical properties from biomolecules to living cells. Pflugers. Arch. 2008; 456 (1): 13-27. DOI: 10.1007/s00424-008-0448-y. PMID: 18213477

10. Zhao C.X., Shao H.B., Chu L.Y. Aquaporin structure-function relationships: water flow through plant living cells. Colloids Surf. B. Biointerfaces. 2008; 62 (2): 163-172. DOI: 10.1016/j.colsurfb.2007.10.015. PMID: 18063350

11. Volle C.B., Ferguson M.A., Aidala K.E., Spain E.M., Núñez M.E. Quantitative changes in the elasticity and adhesive properties of Escherichia coli ZK1056 prey cells during predation by bdellovibrio bacteriovorus. Langmuir. 2008; 24 (15): 8102-8110. DOI: 10.1021/la8009354. PMID: 18572929

12. Vadillo-Rodriguez V., Beveridge T.J., Dutcher J.R. Surface viscoelasticity of individual gram-negative bacterial cells measured using atomic force microscopy. J. Bacteriol. 2008; 190 (12): 4225-4232. DOI: 10.1128/JB.00132-08. PMID: 18408030

13. Azeloglu E.U., Costa K.D. Dynamic AFM elastography reveals phase dependent mechanical heterogeneity of beating cardiac myocytes. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009; 2009: 7180-7183. DOI: 10.1109/IEMBS.2009.5335316. PMID: 19965272

14. Franze K. Atomic force microscopy and its contribution to understanding the development of the nervous system. Curr. Opin. Genet. Dev. 2011; 21 (5): 530-537. DOI: 10.1016/j.gde.2011.07.001. PMID: 21840706

15. Lekka M., Fornal M., Pyka-Fos´ciak G., Lebed K., Wizner B., Grodzicki T., Styczeñ J. Erythrocyte stiffness probed using atomic force microscope. Biorheology. 2005; 42 (4): 307-317. PMID: 16227

16. Picas L., Milhiet P.E., Hernández-Borrell J. Atomic force microscopy: a versatile tool to probe the physical and chemical properties of supported membranes at the nanoscale. Chem. Phys. Lipids. 2012; 165 (8): 845-860. DOI: 10.1016/j.chemphyslip.2012.10.005. PMID: 23194897

17. Hekele O., Goesselsberger C.G., Gebeshuber I.C. Nanodiagnostics performed on human red blood cells with atomic force microscopy. Mater. Sci. Technol. 2008; 24 (9): 1162-1165. DOI: 10.1179/174328408X341834

18. Sirghi L., Ponti J., Broggi F., Rossi F. Probing elasticity and adhesion of live cells by atomic force microscopy indentation. Eur. Biophys. J. 2008; 37 (6): 935-945. DOI: 10.1007/s00249-008-0311-2. PMID: 18365186

19. Zhang C.Y., Zhang Y.W. Extracting elastic properties and prestress of a cell using atomic force microscopy. J. Mater. Res. 2015; 24 (3): 1167-1171. DOI: 10.1557/jmr.2009.0121

20. Bremmell K.E., Evans A., Prestidge C.A. Deformation and nano-rheology of red blood cells: an AFM investigation. Colloids Surf. B. Biointerfaces. 2006; 50 (1): 43-48. DOI: 10.1016/j.colsurfb.2006.03.002. PMID: 16701986

21. McPhee G., Dalby M.J., Riehle M., Yin H. Can common adhesion molecules and microtopography affect cellular elasticity? A combined atomic force microscopy and optical study. Med. Biol. Eng. Comput. 2010; 48 (10): 1043-1053. DOI: 10.1007/s11517-010-0657-3. PMID: 20623199

22. Fisseha D., Katiyar V.K. Analysis of mechanical behavior of red cell membrane in sickle cell disease. Appl. Mathematics. 2012; 2 (2): 40-46. DOI: 10.5923/j.am.20120202.08

23. Kim Y., Kim K., Park Y.K. Blood cell — an overview of studies in hematology. In: Moschandreou T.E. (ed.). Measurement techniques for red blood cell deformability: recent advances. Rijeka, Croatia; 2012: 167-195. DOI: 10.5772/50698

24. Buys A.V., Van Rooy M.J., Soma P., Van Papendorp D., Lipinski B., Pretorius E. Changes in red blood cell membrane structure in type 2 diabetes: a scanning electron and atomic force microscopy study. Сardiovasc. Diabetol. 2013; 12: 25. DOI: 10.1186/1475-2840-12-25. PMID: 23356738

25. Li M., Liu L., Xi N., Wang Y., Dong Z., Xiao X., Zhang W. Atomic force microscopy imaging and mechanical properties measurement of red blood cells and aggressive cancer cells. Sci. China Life Sci. 2012; 55 (11): 968-973. DOI: 10.1007/s11427-012-4399-3. PMID: 23160828

26. Yu M., Wang J., Wang H., Dong S. Calculation of the intracellular elastic modulus based on an atomic force microscope micro-cutting system. Chin. Sci. Bull. 2012; 57 (15): 1868-1872. DOI: 10.1007/s11434-012-5053-y

27. Kasas S., Wang X., Hirling H., Marsault R., Huni B., Yersin A., Regazzi R., Grenningloh G., Riederer B., Forrò L., Dietler G., Catsicas S. Superficial and deep changes of cellular mechanical properties following cytoskeleton disassembly. Cell. Motil. Cytoskeleton. 2005; 62 (2): 124-132. DOI: 10.1002/cm.20086. PMID: 16145686

28. Sen S., Subramanian S., Discher D.E. Indentation and adhesive probing of a cell membrane with AFM: theoretical model and experiments. Biophys. J. 2005; 89 (5): 3203–3213. DOI: 10.1529/biophysj.105.063826. PMID: 16113121


Review

For citations:


Chernysh A.M., Kozlova E.K., Moroz V.V., Sergunova V.A., Gudkova O.E., Kozlov A.P., Manchenko E.A. Nonlinear Local Deformations of Erythrocyte Membranes: Normal Erythrocytes (Part 1). General Reanimatology. 2017;13(5):58-68. https://doi.org/10.15360/1813-9779-2017-5-58-68

Views: 942


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)