Extracorporeal Detoxification in Abdominal Sepsis in Cancer Patients
https://doi.org/10.15360/1813-9779-2018-2-25-34
Abstract
The purpose is to evaluate the detoxification effects of the polymyxin sorption columns and filtration detoxification using polymethyl methacrylate membranes in abdominal sepsis in cancer patients.
Materials and Methods. We examined 226 patients with oncological diseases of abdominal organs complicated by abdominal sepsis postsurgery. In 50 cases, septic shock was reported. In 173 patients an acute renal injury (ARI) was diagnosed in the structure of organ failures, of which a combination with acute respiratory distress syndrome (ARDS) was diagnosed in 61 patients. The severity was 26.3±3.3 points (APACHE-II scale), 10.2±2.5 points (SOFA scale), and 4.3±1.8 points (qSOFA scale). Microbiological identification was obtained in 155 (68.6%) cases. The polymyxin column sorption was used in 86 patients 2–6 hours after sepsis was diagnosed with the EAA greater than 0.5. The blood flow rate was 80–150 mL/min; the duration was 120–240 min; the sorption frequency was 2–3 sessions at a 24-hour interval. If ARI and ARDS were developed, detoxification by filtration using a dialyzer with a BK-1.6F polymethylmethacrylate membrane was included in the complex treatment of 144 patients. The detoxification was carried out for 8–12 hours changing the dialyzer every 4 hours.
Results. A statistically significant decreases of hyperthermia, leukocytosis, neutrophilia, procalcitonin, and the EAA test values were revealed after the completion of the sorption treatment. Normalization of hemodynamic parameters, increase of the oxygenation index, and SOFA scoring decrease by 5.6±2.1 points (P<0.05) were found. PCT and IL-6 blood levels decreased from 6.7±2.7 ng/mL to 2.3±0.6 ng/mL and from 7300±7700 pg/mL to 860±180 pg/mL, respectively, as determined 60 minutes after completion of filtration detoxification procedure (P<0.05). The SOFA index decreased by 4.1±1.1 points (P<0.05).
Conclusion. The use of polymyxin column sorption and filtration detoxification using a polymethyl metacrylate membrane improves the results of treatment of abdominal sepsis in cancer patients.
About the Authors
N. D. UshakovaRussian Federation
63 14th Line S Rostov Scientific Research Oncological Institute, Ministry of Health of Russia tr., 344037 Rostov-na-Donu
O. I. Kit
Russian Federation
63 14th Line Str., 344037 Rostov-na-Donu
A. A. Maslov
Russian Federation
63 14th Line Str., 344037 Rostov-na-Donu
A. P. Men'shenina
Russian Federation
63 14th Line Str., 344037 Rostov-na-Donu
References
1. Singer M., Deutschman C.S., Seymour C.W., Shankar-Hari M., Annane D., Bauer M., Bellomo R., Bernard G.R., Chiche J.D., Coopersmith C.M., Hotchkiss R.S., Levy M.M., Marshall J.C., Martin G.S., Opal S.M., Rubenfeld G.D., van der Poll T., Vincent J.L., Angus D.C. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016; 315 (8): 801-810. DOI: 10.1001/jama.2016.0287. PMID: 26903338
2. Moroz V.V., Golubev A.M. Sepsis: principles of diagnosis. Obshchaya Reanimatologiya = General Reanimatology. 2013; 9 (6): 5-10. DOI: 10.15360/1813-9779-2013-6-5. [In Russ., In Engl.]
3. Tyurin I.N., Rautbart S.A., Kozlov I.A. Early characteristics of circulation in patients with poor outcome of abdominal sepsis (preliminary report). Obshchaya Reanimatologiya = General Reanimatology. 2017; 13 (3): 13- 24. DOI:10.15360/1813-9779-2017-3-13-24. [In Russ., In Engl.]
4. Khoroshilov S.E., Nikulin A.V. Detoxication in critical conditions: an insight into the scientific problem in the XXI century (review). Obshchaya Reanimatologiya = General Reanimatology. 2017; 13 (5): 85-108. DOI: 10.15360/1813-9779-2017-5-85-108. [In Russ., In Engl.]
5. Yaroustovsky M., Abramyan M., Komardina E., Nazarova H. Blood purification in intensive care patients with multiple organ dysfunction syndrome and sepsis after cardiac surgery. Vessel Plus. 2017; 1: 49-60. DOI: 10.20517/2574-1209.2017.11
6. Khoroshilov S.E., Marukhov A.V., Nikulin A.V. Plasmaferesis in enzymatic stage of severe acute pancreatitis: new look at the well tested method. Medicine (Almaty). 2017; 4: 287–292.
7. Murugan R., Karajala-Subramanyam V., Lee M., Yende S., Kong L., Carter M., Angus D.C., Kellum J.A.; Genetic and Inflammatory Markers of Sepsis (GenIMS) investigators. Acute kidney injury in non-severe pneumonia is associated with an increased immune response and lower survival. Kidney Int. 2010; 77 (6): 527–535. DOI: 10.1038/ki.2009.502. PMID: 20032961
8. Glodowski S.D., Wagener G. New insights into the mechanisms of acute kidney injury in the intensive care unit. J. Clin. Anesth. 2015; 27 (2): 175– 180. DOI: 10.1016/j.jclinane.2014.09.011. PMID: 25480306
9. Ushakova N.D., Shevchenko A.N., Chetverikov M.V., Zlatnik E.Y., Zykova T.A. Results of using selective endotoxin adsorption in cancer patients with sepsis. Obshchaya Reanimatologiya = General Reanimatology. 2014; 10 (6): 32-38. DOI: 10.15360/1813-9779-2014-6-32-38. [In Russ., In Engl.]
10. Holthoff J.H., Wang Z., Seely K.A., Gokden N., Mayeux P.R. Resveratrol improves renal microcirculation, protects the tubular epithelium, and prolongs survival in a mouse model of sepsis-induced acute kidney injury. Kidney Int. 2012; 81 (4): 370–378. DOI: 10.1038/ki.2011.347. PMID: 21975863
11. Legrand M., Dupuis C., Simon C., Gayat E., Mateo J., Lukaszewicz A.C., Payen D. Association between systemic hemodynamics and septic acute kidney injury in critically ill patients: a retrospective observational study. Crit. Care. 2013; 17 (6): R278. DOI: 10.1186/cc13133. PMID: 24289206
12. Boomer J.S., To K., Chang K.C., Takasu O., Osborne D.F., Walton A.H., Bricker T.L., Jarman S.D.2nd, Kreisel D., Krupnick A.S., Srivastava A., Swanson P.E., Green J.M., Hotchkiss R.S. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA. 2011; 306 (23): 2594–2605. DOI: 10.1001/jama.2011.1829. PMID: 22187279
13. Shimizu T., Miyake T., Tani M. History and current status of polymyxin Bimmobilized fiber column for treatment of severe sepsis and septic shock. Ann. Gastroenterol. Surg. 2017; 1 (2): 105–113. DOI: 10.1002/ags3.12015
14. Lee C.T., Tu Y.K., Yeh Y.C., Chang T., Shih P.Y., Chao A., Huang H.H., Cheng Y.J., Yeh Y.C.; Behalf of the NTUH Center of Microcirculation Medical Research (NCMMR). Effects of polymyxin B hemoperfusion on hemodynamics and prognosis in septic shock patients. J. Crit. Care. 2018; 43: 202–206. DOI: 10.1016/j.jcrc.2017.04.035. PMID: 28915395
15. Aoike I. Clinical significance of protein adsorbable membranes – long-term clinical effects and analysis using a proteomic technique. Nephrol. Dial. Transplant. 2007; 22 (Suppl 5): v13–v19. DOI: 10.1093/ndt/gfm295. PMID: 17586841
16. Nishida O., Nakamura T., Kuriyama N., Hara Y., Yumoto M., Shimomura Y., Moriyama K. Sustained high-efficiency daily diafiltration using a mediator-adsorbing membrane (SHEDD-fA) in the treatment of patients with severe sepsis. Contrib. Nephrol. 2011; 173: 172-181. DOI: 10.1159/000329057. PMID: 21865790
17. Nakada T.A., Oda S., Matsuda K., Sadahiro T., Nakamura M., Abe R., Hirasawa H. Continuous hemodiafiltration with PMMA Hemofilter in the treatment of patients with septic shock. Mol. Med. 2008; 14 (5-6): 257- 263. DOI: 10.2119/2007-00108. Nakada. PMID: 18327291
18. Nakamura M., Oda S., Sadahiro T., Hirayama Y., Watanabe E., Tateishi Y., Nakada T.A., Hirasawa H. Treatment of severe sepsis and septic shock by CHDF using a PMMA membrane hemofilter as a cytokine modulator. Contrib. Nephrol. 2010; 166: 73-82. DOI: 10.1159/000314855. PMID: 20472994
19. Oshihara W., Fujieda H., Ueno Y. A new poly(methyl methacrylate) membrane dialyzer, NF, with adsorptive and antithrombotic properties. Contrib. Nephrol. 2017; 189: 230–236. DOI: 10.1159/000450806. PMID: 27951573
20. Cantaluppi V., Quercia A.D., Dellepiane S., Ferrario S., Camussi G., Biancone L. Interaction between systemic inflammation and renal tubular epithelial cells. Nephrol. Dial. Transplant. 2014; 29 (11): 2004–2011. DOI: 10.1093/ndt/gfu046. PMID: 24589723
21. Cho E., Lee J.H., Lim H.J., Oh S.W., Jo S.K., Cho W.Y., Kim H.K., Lee S.Y. Soluble CD25 is increased in patients with sepsis-induced acute kidney injury. Nephrology. (Carlton). 2014; 19 (6): 318–324. DOI: 10.1111/nep.12230. PMID: 24646167
22. Yang R., Wang X., Liu D., Liu S. Energy and oxygen metabolism disorder during septic acute kidney injury. Kidney Blood Press. Res. 2014; 39 (4): 240–251. DOI: 10.1159/000355801. PMID: 25171106
23. Gocze I., Koch M., Renner P., Zeman F., Graf B.M., Dahlke M.H., Nerlich M., Schlitt H.J., Kellum J.A., Bein T. Urinary biomarkers TIMP-2 and IGFBP7 early predict acute kidney injury after major surgery. PLoS One. 2015; 10 (3): e0120863. DOI: 10.1371/journal.pone.0120863. PMID: 25798585
24. Ronco C., Ricci Z., De Backer D., Kellum J.A., Taccone F.S., Joannidis M., Pickkers P., Cantaluppi V., Turani F., Saudan P., Bellomo R., Joannes-Boyau O., Antonelli M., Payen D., Prowle J.R., Vincent J.L. Renal replacement therapy in acute kidney injury: controversy and consensus. Crit. Care. 2015; 19: 146. DOI: 10.1186/s13054-015-0850-8. PMID: 25887923
25. Mariano F., Cantaluppi V., Stella M., Romanazzi G.M., Assenzio B., Cairo M., Biancone L., Triolo G., Ranieri V.M., Camussi G. Circulating plasma factors induce tubular and glomerular alterations in septic burns patients. Crit. Care. 2008; 12 (2): R42. DOI: 10.1186/cc6848. PMID: 18364044
26. Dellepione C., Marengo M., Cantaluppi V. Detrimental cross-talk between sepsis and acute kidney injury: new pathogenic mechanisms, early biomarkers and targeted therapies. Crit. Care. 2016: 20: 61. DOI: 10.1186/s13054-016-1219-3. PMID: 26976392
27. Sidorenko Yu.S., Nerodo G.A., Menshenina A.P., Golotina L.Yu., Ushakova N.D. Experience in the use of intraperitoneal chemotherapy with ascitic fluid as a solvent for chemotherapy in the treatment of ovarian cancer. Opukholi Zhenskoi Reproduktivnoi Sistemy. 2009; 1: 6-12. [In Russ.]
28. Zlatnik E.Yu., Goroshinskaya I.A., Menshenina A.P., Nerodo G.A., Golotina L.Yu., Ushakova N.D., Nikipelova E.A. The composition of cytokines of ascitic fluid and its components, obtained by filtration detoxification, in patients with ovarian cancer. Rossiisky Immunologichesky Zhurnal. 2008; 2-3 (11): 316. [In Russ.]
29. Shikhlyarova A.I., Nerodo G.A., Menshenina A.P., Kurkina T.A. Mordan A.Yu. Morphostructure of ascitic fluid as a criterion for predicting the effectiveness of chemotherapy for advanced ovarian cancer. Voprosy Onkologii. 2013; 59 (53): 810–811. [In Russ.]
30. Gabrielyan N.I., Lipatova V.I. Experience in the use of the median molecule index of blood to diagnose kidney diseases in children. Laboratornoe Delo. 1984; 3: 138–140. PMID: 6200672. [In Russ.]
31. Matveyev S.B., Spiridonova T.G., Klychnikova E.V., Nikolaeva N.Yu., Smirnov S.V., Golikov P.P. The evaluation criteria for endogenous intoxication in burn trauma. Klinicheskaya Laboratornaya Diagnostika. 2003; 10: 3–6. PNID: 14663873. [In Russ.]
32. Shabalin V.N., Shatokhina S.N. Morphology of human biological fluids. Moscow.: Nauka; 2001: 135. [In Russ.]
Review
For citations:
Ushakova N.D., Kit O.I., Maslov A.A., Men'shenina A.P. Extracorporeal Detoxification in Abdominal Sepsis in Cancer Patients. General Reanimatology. 2018;14(2):25-34. (In Russ.) https://doi.org/10.15360/1813-9779-2018-2-25-34