Preview

Общая реаниматология

Расширенный поиск

Микробиота кишечника при критических состояниях (обзор)

https://doi.org/10.15360/1813-9779-2018-5-96-119

Полный текст:

Аннотация

Радикальные изменения в составе, разнообразии и метаболической активности микробиоты кишечника пациентов в критическом состоянии с большой вероятностью отрицательно влияют на исход лечения. Дисфункция микробиоты может быть предиктором и, возможно, основной причиной инфекционных осложнений и сепсиса. В клинике используют объективные шкалы оценки тяжести состояния пациента, включающие специфические параметры нарушений органов и систем, однако функция микробиоты не считается специфичной и, поэтому, не оценивается. Технические возможности последнего десятилетия позволили охарактеризовать кишечную микробиоту, что способствовало пониманию происходящих процессов. Авторы провели анализ данных о роли микробиоты кишечника как метаболического ≪реактора≫ при критических состояниях, возможных осложнениях, связанных с дисбалансом ≪вредных≫ и «полезных» бактерий, а также рассмотрели потенциал целевой терапии, направленной непосредственно на коррекцию микробиоты кишечника. Для поиска статей были использованы базы данных Scopus и Web of Science с 2001 по 2018 год: (Gut Microbiota) AND (Critically ill OR Intensive care unit), взяты ключевые слова для поиска: микробиота кишечника, метаболизм, сепсис, антибиотики, пациенты в критическом состоянии, полиорганная недостаточность. Ряд вопросов в понимании взаимодействия кишечной микробиоты и организма хозяина остается открытым. Необходимо учитывать вмешательство микробного метаболизма при оценке метаболома пациентов с сепсисом. Среди низкомолекулярных соединений, обнаруженных в крови пациентов с сепсисом, особое внимание заслуживают молекулы, которые можно отнести к «общим метаболитам» человека и бактерий, например продукты биодеградации ароматических соединений, содержание которых многократно увеличивается в крови пациентов с сепсисом. Следует учитывать и моделировать в экспериментах изменения внутренней среды человека, которые происходят во время радикальной перестройки микробиома пациентов в критическом состоянии. Такой подход открывает новые перспективы для объективного мониторинга заболеваний, проводя оценку метаболического профиля в определенный момент времени на основе интегральных показателей, отражающих состояние системы микробиом/метаболом, что в будущем обеспечит новые мишени для терапевтического воздействия.

Об авторах

Е. А. Черневская
НИИ общей реаниматологии им. В. А. Неговского ФНКЦ РР
Россия

Екатерина Черневская

107031, г. Москва, ул. Петровка, д. 25, стр. 2 


 



Н. В. Белобородова
НИИ общей реаниматологии им. В. А. Неговского ФНКЦ РР
Россия

107031, г. Москва, ул. Петровка, д. 25, стр. 2 



Список литературы

1. Белобородова Н.В. Сепсис – метаболомный подход. М.: МИА; 2018: 272. ISBN 978-5-9986-0350-1

2. Schmidt K., Mwaigwisya S., Crossman L.C., Doumith M., Munroe D., Pires C., Khan A.M., Woodford N., Saunders N.J., Wain J., O’Grady J., Livermore D.M. Identification of bacterial pathogens and antimicrobial resistance directly from clinical urines by nanopore-based metagenomic sequencing. J. Antimicrob. Chemother. 2017; 72 (1): 104–114. DOI: 10.1093/jac/dkw397. PMID: 27667325

3. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012; 486 (7402): 207–214. DOI: 10.1038/nature11234. PMID: 22699609

4. Berg R.D. The indigenous gastrointestinal microflora. Trends Microbiol. 1996; 4 (11): 430–435. DOI: 10.1016/0966-842X(96)10057-3. PMID: 8950812

5. Kelly D., Mulder I.E. Microbiome and immunological interactions. Nutr. Rev. 2012; 70 (Suppl 1): S18-S30. DOI: 10.1111/j.17534887.2012.00498.x. PMID: 22861803

6. Proctor L.M. The Human Microbiome Project in 2011 and beyond. Cell Host. Microbe. 2011; 10 (4): 287-291. DOI:10.1016/j.chom.2011.10.001. PMID: 22018227

7. Franzosa E.A., Huang K., Meadow J.F., Gevers D., Lemon K.P., Bohannan B.J., Huttenhower C. Identifying personal microbiomes using metagenomic codes. Proc. Natl. Acad. Sci. USA. 2015; 112 (22): E2930-E2938. DOI: 10.1073/pnas.1423854112. PMID: 25964341

8. Turnbaugh P.J., Hamady M., Yatsunenko T., Cantarel B.L., Duncan A., Ley R.E., Sogin M.L., Jones W.J., Roe B.A., Affourtit J.P., Egholm M., Henrissat B., Heath A.C., Knight R., Gordon J.I. A core gut microbiome in obese and lean twins. Nature. 2009; 457 (7228): 480–484. DOI: 10.1038/nature07540. PMID: 19043404

9. Sekirov I., Russell S.L., Antunes L.C., Finlay B.B. Gut microbiota in health and disease. Physiol. Rev. 2010; 90 (3): 859–904. DOI: 10.1152/physrev.00045.2009. PMID: 20664075

10. Cho I., Blaser M.J. The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 2012; 13 (4): 260-270. DOI: 10.1038/nrg3182. PMID: 22411464

11. Lepage P., Leclerc M.C., Joossens M., Mondot S., Blottière H.M., Raes J., Ehrlich D., Doré J. A metagenomic insight into our gut’s microbiome. Gut. 2013; 62 (1): 146-158. DOI: 10.1136/gutjnl-2011-301805. PMID: 22525886

12. Turnbaugh P.J., Ley R.E., Mahowald M.A., Magrini V., Mardis E.R., Gordon J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006; 444 (7122): 1027–1031. DOI: 10.1038/nature05414. PMID: 17183312

13. Mariat D., Firmesse O., Levenez F., Guimar°es V., Sokol H., Doré J., Corthier G., Furet J.P. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009; 9: 123. DOI: 10.1186/1471-2180-9-123. PMID: 19508720

14. Tyakht A.V., Kostryukova E.S., Popenko A.S., Belenikin M.S., Pavlenko A.V., Larin A.K., Karpova I.Y., Selezneva O.V., Semashko T.A., Ospanova E.A., Babenko V.V., Maev I.V., Cheremushkin S.V., Kucheryavyy Y.A., Shcherbakov P.L., Grinevich V.B., Efimov O.I., Sas E.I., Abdulkhakov R.A., Abdulkhakov S.R., Lyalyukova E.A., Livzan M.A., Vlassov V.V., Sagdeev R.Z., Tsukanov V.V., Osipenko M.F., Kozlova I.V., Tkachev A.V., Sergienko V.I., Alexeev D.G., Govorun V.M. Human gut microbiota community structures in urban and rural populations in Russia. Nat. Commun. 2013; 4: 2469. DOI: 10.1038/ncomms3469. PMID: 24036685

15. Insoft R.M., Sanderson I.R., Walker W.A. Development of immune function in the intestine and its role in neonatal diseases. Pediatr. Clin. North Am. 1996; 43 (2): 551-571. DOI: 10.1016/S0031-3955(05)70420-X. PMID: 8614615

16. Tamburini S., Shen N., Wu H.C., Clemente J.C. The microbiome in early life: implications for health outcomes. Nat. Med. 2016; 22 (7): 713-722. DOI: 10.1038/nm.4142. PMID: 27387886

17. Schirmer M., Smeekens S.P., Vlamakis H., Jaeger M., Oosting M., Franzosa E.A., Horst R.T., Jansen T., Jacobs L., Bonder M.J., Kurilshikov A., Fu J., Joosten L., Zhernakova A., Huttenhower C., Wijmenga C., Netea M.G., Xavier R.J. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell. 2016; 167 (7): 1897. DOI: 10.1016/j.cell.2016.11.046. PMID: 27984736

18. Ohnmacht C. Microbiota, regulatory T cell subsets, and allergic disorders. Allergo J. Int. 2016; 25 (5): 114–123. DOI: 10.1007/s40629-016-0118-0. PMID: 27656354

19. Donia M.S., Fischbach M.A. Small molecules from the human microbiota science. Science. 2015; 349 (6246): 1254766. DOI: 10.1126/science.1254766. PMID: 26206939

20. Thorburn A.N., Macia L., Mackay C.R. Diet, metabolites, and «westernlifestyle» inflammatory diseases. Immunity. 2014; 40 (6): 833-842. DOI: 10.1016/j.immuni.2014.05.014. PMID: 24950203

21. Wikoff W.R., Anfora A.T., Liu J., Schultz P.G., Lesley S.A., Peters E.C., Siuzdak G. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl. Acad. Sci. USA. 2009; 10; 106 (10): 3698-3703. DOI: 10.1073/pnas.0812874106. PMID: 19234110

22. Blaser M.J., Falkow S. What are the consequences of the disappearing human microbiota? Nat. Rev. Microbiol. 2009; 7 (12): 887-894. DOI: 10.1038/nrmicro2245. PMID: 19898491

23. Biedermann L., Rogler G. The intestinal microbiota: its role in health and disease. Eur. J. Pediatr. 2015; 174 (2): 151-167. DOI: 10.1007/s00431014-2476-2. PMID: 25563215

24. Белобородова Н.В. Интеграция метаболизма человека и его микробиома при критических состояниях. Общая реаниматология. 2012; 8 (4): 42-54. DOI: 10.15360/1813-9779-2012-4-42

25. Haak B.W., Levi M., WiersingaW.J. Microbiota-targeted therapies on the intensive care unit. Curr. Opin. Crit. Care. 2017; 23 (2): 167-174. DOI: 10.1097/MCC.0000000000000389. PMID: 28092309

26. Marshall J.C. Gastrointestinal flora and its alterations in critical illness. Curr. Opin. Clin. Nutr. Metab. Care. 1999; 2 (5): 405-411. DOI: 10.1097/00075197-199909000-00009. PMID: 10589383

27. Alverdy J.C., Laughlin R.S., Wu L. Influence of the critically ill state on host-pathogen interactions within the intestine: gut-derived sepsis redefined. Crit. Care Med. 2003; 31 (2): 598-607. DOI: 10.1097/01.CCM.0000045576.55937.67. PMID: 12576972

28. Lapichino G., Callegari M.L., Marzorati S., Cigada M., Corbella D., Ferrari S., Morelli L. Impact of antibiotics on the gut microbiota of critically ill patients. J. Med. Microbiol. 2008; 57 (Pt 8): 1007-1014. DOI: 10.1099/jmm.0.47387-0. PMID: 18628503

29. Zaborin A., Smith D., Garfield K., Quensen J., Shakhsheer B., Kade M., Tirrell M., Tiedje J., Gilbert J.A., Zaborina O., Alverdy J.C. Membership and behavior of ultra-low-diversity pathogen communities present in the gut of humans during prolonged critical illness. MBio. 2014; 5 (5): e0136114. DOI: 10.1128/mBio.01361-14. PMID: 25249279

30. Stiefel U., Donskey C.J. The role of the intestinal tract as a source for transmission of nosocomial pathogens. Curr. Infect. Dis. Rep. 2004; 6 (6): 420-425. DOI: 10.1007/s11908-004-0060-z. PMID: 15538978

31. Ojima M., Motooka D., Shimizu K., Gotoh K., Shintani A., Yoshiya K., Nakamura S., Ogura H., Iida T., Shimazu T. Metagenomic analysis reveals dynamic changes of whole gut microbiota in the acute phase of intensive care unit patients. Dig. Dis. Sci. 2016; 61 (6): 1628-1634. DOI: 10.1007/s10620-015-4011-3. PMID: 26715502

32. McDonald D., Ackermann G., Khailova L., Baird C., Heyland D., Kozar R., Lemieux M., Derenski K., King J., Vis-Kampen C., Knight R., Wischmeyer P.E. Extreme dysbiosis of the microbiome in critical illness. mSphere. 2016; 1 (4): e00199-16. DOI: 10.1128/mSphere.00199-16. PMID: 27602409

33. Chernevskaya E., Beloborodova N., Bedova A., Pautova A., Klimenko N., Tyakht A., Gusarov V. The gut microbiota disturbances in ICU patients with nosocomial pneumonia. Infection. 2017; 45 (Suppl 1): 37-38. DOI: 10.1007/s15010-017-1046-8. PMID: 28799000

34. Säemann M.D., Böhmig G.A., Zlabinger G.J. Short-chain fatty acids: bacterial mediators of a balanced host-microbial relationship in the human gut. Wien Klin. Wochenschr. 2002; 114 (8-9): 289 –300. PMID: 12212362

35. Blottière H.M., Buecher B., Galmiche J.P., Cherbut C. Molecular analysis of the effect of short-chain fatty acids on intestinal cell proliferation. Proc. Nutr. Soc. 2003; 62 (1): 101-106. DOI: 10.1079/PNS2002215. PMID: 12740064

36. Yin L., Laevsky G., Giardina C. Butyrate suppression of colonocyte NFkappa B activation and cellular proteasome activity. J. Biol. Chem. 2001; 276 (48): 44641–44646. DOI: 10.1074/jbc.M105170200. PMID: 11572859

37. Heerdt B.G., Houston M.A., Augenlicht L.H. Short-chain fatty acid-initiated cell cycle arrest and apoptosis of colonic epithelial cells is linked to mitochondrial function. Cell Growth Differ. 1997; 8 (5): 523–532. PMID: 9149903

38. Shimizu K., Ogura H., Goto M., Asahara T., Nomoto K., Morotomi M., Yoshiya K., Matsushima A., Sumi Y., Kuwagata Y., Tanaka H., Shimazu T., Sugimoto H. Altered gut flora and environment in patients with severe SIRS. J. Trauma. 2006; 60 (1): 126-133. DOI: 10.1097/01.ta.0000197374.99755.fe. PMID: 16456446

39. Zoetendal E.G., Raes J., van den Bogert B., Arumugam M., Booijink C.C., Troost F.J., Bork P., Wels M., de Vos W.M., Kleerebezem M. The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. ISME J. 2012; 6 (7): 1415-1426. DOI: 10.1038/ismej.2011.212. PMID: 22258098

40. Levy M., Blacher E., Elinav E. Microbiome, metabolites and host immunity. Curr. Opin. Microbiol. 2017; 35: 8–15. DOI: 10.1016/j.mib.2016.10.003. PMID: 27883933

41. Beloborodova N.V., Olenin A.Y., Pautova A.K. Metabolomic findings in sepsis as a damage of host-microbial metabolism integration. J. Crit. Care. 2018; 43: 246-255. DOI: 10.1016/j.jcrc.2017.09.014. PMID: 28942199

42. Agus A., Planchais J., Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host. Microbe. 2018; 23 (6): 716724. DOI: 10.1016/j.chom.2018.05.003. PMID: 29902437

43. Fedotcheva N.I., Kazakov R.E., Kondrashova M.N., Beloborodova N.V. Toxic effects of microbial phenolic acids on the functions of mitochondria. Toxicol. Lett. 2008; 180 (3): 182-188. DOI: 10.1016/j.toxlet.2008.06.861. PMID: 18634861

44. Белобородова Н.В., Мороз В.В., Бедова А.Ю., Осипов А.А., Саршор Ю.Н., ЧерневскаяЕ.А. Участие ароматических микробных метаболитов в развитии тяжелой инфекции и сепсиса. Анестезиология и реаниматология. 2016; 61 (3): 202-208. DOI: 10.18821/0201-7563-2016-3-202208. PMID: 29465205

45. Fedotcheva N.I., Chernevskaya E.A., Beloborodova N.V. The role of bacterial phenolic metabolites in mitochondrial dysfunction. Crit. Care. 2016; 20 (Suppl 1): P4. DOI: 10.1186/s13054-016-1204-x. PMID: 26996981

46. Мороз В.В., Белобородова Н.В., Осипов А.А., Власенко А.В., Бедова А.Ю., Паутова А.К. Фенилкарбоновые кислоты в оценке тяжести состояния и эффективности интенсивного лечения больных в реаниматологии. Общая реаниматология. 2016; 12 (4): 37-48. DOI: 10.15360/1813-9779-2016-4-37-48

47. Khodakova A.S., Beloborodova N.V. Microbial metabolites in the blood of patients with sepsis. Crit. Care. 2007; 11 (Suppl 4): 5. DOI: 10.1186/cc5150

48. Valerio F., Lavermicocca P., Pascale M., Visconti A. Production of phenyllactic acid by lactic acid bacteria: an approach to the selection of strains contributing to food quality and preservation. FEMS Microbiol. Lett. 2004; 233 (2): 289-295. DOI: 10.1016/j.femsle.2004.02.020. PMID: 15063498

49. Zhao H., Jiang Z., Chang X., Xue H., Yahefu W., Zhang X. 4-Hydroxyphenylacetic acid prevents acute APAP-induced liver injury by increasing phase II and antioxidant enzymes in mice. Front. Pharmacol. 2018; 9: 653. DOI: 10.3389/fphar.2018.00653. PMID: 29973881

50. Jenner A.M., Rafter J., Halliwell B. Human fecal water content of phenolics: the extent of colonic exposure to aromatic compounds. Free Radic. Biol. Med. 2005; 38 (6): 763-772. DOI: 10.1016/j.freeradbiomed.2004.11.020. PMID: 15721987

51. Белобородова Н.В., Мороз В.В., Осипов А.А., Бедова А.Ю., Оленин А.Ю., Гецина М.Л., Карпова О.В., Оленина Е.Г. Нормальный уровень сепсис-ассоциированных фенилкарбоновых кислот в сыворотке крови человека. Биохимия. 2015; 80 (3): 449-455. DOI: 10.1134/S0006297915030128. PMID: 25761691

52. Beloborodova N., Moroz V., Osipov A., Bedova A., Sarshor Y., Vlasenko A., Olenin A. Tyrosine metabolism disorder and the potential capability of anaerobic microbiota to decrease the value of aromatic metabolites in critically ill patients. Crit. Care. 2014; 18 (Suppl 2): 42-44. DOI: 10.1186/cc14063

53. Rogers A.J., McGeachie M., Baron R.M., Gazourian L., Haspel J.A., Nakahira K., Fredenburgh L.E., Hunninghake G.M., Raby B.A., Matthay M.A., Otero R.M., Fowler V.G., Rivers E.P., Woods C.W., Kingsmore S., Langley R.J., Choi A.M. Metabolomic derangements are associated with mortality in critically ill adult patients. PLoS One. 2014; 9 (1): e87538. DOI: 10.1371/journal.pone.0087538. PMID: 24498130

54. Dovrolis N., Kolios G., Spyrou G.M., Maroulakou I. Computational profiling of the gut-brain axis: microflora dysbiosis insights to neurological disorders. Brief Bioinform. 2017; Nov 27. [Epub ahead of print]. DOI: 10.1093/bib/bbx154. PMID: 29186317

55. Carabotti M., Scirocco A., Maselli M.A., Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. 2015; 28 (2): 203-209. PMID: 25830558

56. Singh V., Roth S., Llovera G., Sadler R., Garzetti D., Stecher B., Dichgans M., Liesz A. Microbiota dysbiosis controls the neuroinflammatory response after stroke. J. Neurosci. 2016; 36 (28): 7428–7440. DOI: 10.1523/JNEUROSCI.1114-16.2016. PMID: 27413153

57. Stanley D., Mason L.J., Mackin K.E., Srikhanta Y.N., Lyras D., Prakash M.D., Nurgali K., Venegas A., Hill M.D., Moore R.J., Wong C.H. Translocation and dissemination of commensal bacteria in poststroke infection. Nat. Med. 2016; 22 (11): 1277–1284. DOI: 10.1038/nm.4194. PMID: 27694934

58. Benakis C., Brea D., Caballero S., Faraco G., Moore J., Murphy M., Sita G., Racchumi G., Ling L., Pamer E.G., Iadecola C., Anrather J. Commensal mic robiota affects ischemic stroke outcome by regulating intestinal γδ T cells. Nat. Med. 2016; 22 (5): 516-523. DOI: 10.1038/nm.4068. PMID: 27019327

59. Braniste V., Asmakh M., Kowal C., Anuar F., Abbaspour A., Tóth M., Korecka A., Bakocevic N., Ng L.G., Kundu P., Gulyás B., Halldin C., Hultenby K., Nilsson H., Hebert H., Volpe B.T., Diamond B., Pettersson S. The gut microbiota influences blood-brain barrier permeability in mice. Sci. Transl. Med. 2014; 6 (263): 263ra158. DOI: 10.1126/scitranslmed.3009759. PMID: 25411471

60. Fung T.C., Olson C.A., Hsiao E.Y. Interactions between the microbiota, immune and nervous systems in health and disease. Nat. Neurosci. 2017; 20 (2): 145-155. DOI: 10.1038/nn.4476. PMID: 28092661

61. Kau A.L., Ahern P.P., Griffin N.W., Goodman A.L., Gordon J.I. Human nutrition, the gut microbiome and the immune system. Nature. 2011; 474 (7351): 327-336. DOI: 10.1038/nature10213. PMID: 21677749

62. Bravo J.A., Forsythe P., Chew M.V., Escaravage E., Savignac H.M., Dinan T.G., Bienenstock J., Cryan J.F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA. 2011; 108 (38): 1605016055. DOI: 10.1073/pnas.1102999108. PMID: 21876150

63. Foster J.A., McVey Neufeld K.A. Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 2013; 36 (5): 305-312. DOI: 10.1016/j.tins.2013.01.005. PMID: 23384445

64. DeLegge M.H., Smoke A. Neurodegeneration and inflammation. Nutr. Clin. Pract. 2008; 23 (1): 35-41. DOI: 10.1177/011542650802300135. PMID: 18203962

65. Chaudhry N., Duggal A.K. Sepsis associated encephalopathy. Adv. Med. 2014: 2014: 762320. DOI: 10.1155/2014/762320. PMID: 26556425

66. Белобородова Н.В., Острова И.В. Сепсис-ассоциированная энцефалопатия (обзор). Общая реаниматология. 2017; 13 (5): 121-139. DOI: 10.15360/1813-9779-2017-5-121-139

67. Oleskin A.V., Shenderov B.A. Neuromodulatory effects and targets of the SCFAs and gasotransmitters produced by the human symbiotic microbiota. Microb. Ecol. Health Dis. 2016; 27: 30971. DOI: 10.3402/mehd.v27.30971. PMID: 27389418

68. DaSilva N.A., Nahar P.P., Ma H., Eid A., Wei Z., Meschwitz S., Zawia N.H., Slitt A.L., Seeram N.P. Pomegranate ellagitannin-gut microbial-derived metabolites, urolithins, inhibit neuroinflammation in vitro. Nutr. Neurosci. 2017; 7: 1-11. DOI: 10.1080/1028415X.2017.1360558. PMID: 28784051

69. Yissachar N., Zhou Y., Ung L., Lai N.Y., Mohan J.F., Ehrlicher A., Weitz D.A., Kasper D.L., Chiu I.M., Mathis D., Benoist C. An intestinal organ culture system uncovers a role for the nervous system in microbe-immune crosstalk. Cell. 2017; 168 (6): 1135-1148. e12. DOI: 10.1016/j.cell.2017.02.009. PMID: 28262351

70. Annane D., Sharshar T. Cognitive decline after sepsis. Lancet Respir. Med. 2015; 3 (1): 61-69. DOI: 10.1016/S2213-2600(14)70246-2. PMID: 25434614

71. Basler T., Meier-Hellmann A., Bredle D., Reinhart K. Amino acid imbalance early in septic encephalopathy. Intensive Care Med. 2002; 28 (3): 293–298. DOI: 10.1007/s00134-002-1217-6. PMID: 11904658

72. Белобородова Н.В., Ходакова А.С., Байрамов И.Т., Оленин А.Ю. Микробный путь образования фенилкарбоновых кислот в организме человека. Биохимия. 2009; 74 (12): 1657-1663. PMID: 19961416

73. Белобородова Н.В., Байрамов И.Т., Оленин А.Ю., Федотчева Н.И. Экзометаболиты некоторых анаэробных микроорганизмов микрофлоры человека. Биомедицинская химия. 2011; 57 (1): 95—105. DOI: 10.18097/pbmc20115701095. PMID: 21516781

74. Mizock B.A., Sabelli H.C., Dubin A., Javaid J.I., Poulos A., Rackow E.C. Еvidence for altered phenylalanine metabolism and comparison with hepatic encephalopathy. Arch. Intern. Med. 1990; 150 (2): 443-449. PMID: 2302019

75. Williams R.A., Mamotte C.D., Burnett J.R. Phenylketonuria: an inborn error of phenyl-alanine metabolism. Clin. Biochem. Rev. 2008; 29 (1): 3141. PMID: 18566668

76. O’Mahony S.M., Clarke G., Borre Y.E., Dinan T.G., Cryan J.F. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res. 2015; 277: 32-48. DOI: 10.1016/j.bbr.2014.07.027. PMID: 25078296

77. Budden K.F., Gellatly S.L., Wood D.L., Cooper M.A., Morrison M., Hugenholtz P., Hansbro P.M. Emerging pathogenic links between microbiota and the gut-lung axis. Nat. Rev. Microbiol 2017; 15 (1): 55–63. DOI: 10.1038/nrmicro.2016.142. PMID: 27694885

78. Deitch E.A., Xu D.Z., Lu Q. Gut lymph hypothesis of early shock and traumainduced multiple organ dysfunction syndrome: a new look at gut origin sepsis. J. Organ Dysfunct. 2006; 2: 70–79. DOI: 10.1080/17471060600551772

79. Reino D.C., Pisarenko V., Palange D., Doucet D., Bonitz R.P., Lu Q., Colorado I., Sheth S.U., Chandler B., Kannan K.B., Ramanathan M., Xu D.Z., Deitch E.A., Feinman R. Trauma hemorrhagic shock-induced lung injury involves a gut-lymph-induced TLR4 pathway in mice. PLoS One. 2011; 6 (8): e14829. DOI: 10.1371/journal.pone.0014829. PMID: 21829592

80. Schuijt T.J., Lankelma J.M., Scicluna B.P., de Sousa e Melo F., Roelofs J.J., de Boer J.D., Hoogendijk A.J., de Beer R., de Vos A., Belzer C., de Vos W.M., van der Poll T., Wiersinga W.J. The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut. 2016; 65 (4): 575–583. DOI: 10.1136/gutjnl-2015-309728. PMID: 26511795

81. Gray J., Oehrle K., Worthen G., Alenghat T., Whitsett J., Deshmukh H. Intestinal commensal bacteria mediate lung mucosal immunity and promote resistance of newborn mice to infection. Sci. Transl. Med. 2017; 9 (376): eaaf9412. DOI: 10.1126/scitranslmed.aaf9412. PMID: 28179507

82. Dickson R.P., Singer B.H., Newstead M.W., Falkowski N.R., Erb-Downward J.R., Standiford T.J., Huffnagle G.B. Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome. Nat. Microbiol. 2016; 1 (10): 16113. DOI: 10.1038/nmicrobiol.2016.113. PMID: 27670109

83. Jacobs M.C., Haak B.W., Hugenholtz F., Wiersinga W.J. Gut microbiota and host defense in critical illness. Curr. Opin. Crit. Care. 2017; 23 (4): 257-263. DOI: 10.1097/MCC.0000000000000424. PMID: 28548992

84. Rogler G., Rosano G. The heart and the gut. Eur. Heart J. 2014; 35 (7): 426-430. DOI: 10.1093/eurheartj/eht271. PMID: 23864132

85. Pathan N., Burmester M., Adamovic T., Berk M., Ng K.W., Betts H., Macrae D., Waddell S., Paul-Clark M., Nuamah R., Mein C., Levin M., Montana G., Mitchell J.A. Intestinal injury and endotoxemia in children undergoing surgery for congenital heart disease. Am. J. Respir. Crit. Care Med. 2011; 184 (11): 1261-1269. DOI: 10.1164/rccm.201104-0715OC. PMID: 21868501

86. Lam V., Su J., Hsu A., Gross G.J., Salzman N.H., Baker J.E. Intestinal microbial metabolites are linked to severity of myocardial infarction in rats. PLoS One. 2016; 11 (8): e0160840. DOI: 10.1371/journal.pone.0160840. PMID: 27505423

87. Vincent J.L., Rello J., Marshall J., Silva E., Anzueto A., Martin C.D., Moreno R., Lipman J., Gomersall C., Sakr Y., Reinhart K.; EPIC II Group of Investigators. International study of the prevalence and outcomes of infection in intensive care units. JAMA. 2009; 302 (21): 2323-2329. DOI: 10.1001/jama.2009.1754. PMID: 19952319

88. Wischmeyer P.E., McDonald D., Knight R. Role of the microbiome, probiotics, and “dysbiosis therapy” in critical illness. Curr. Opin. Crit. Care. 2016; 22 (4): 347-353. DOI: 10.1097/MCC.0000000000000321. PMID: 27327243

89. Dethlefsen L., Relman D.A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl. Acad. Sci. USA. 2011; 108 (Suppl 1): 4554–4561. DOI: 10.1073/pnas.1000087107. PMID: 20847294

90. Isaac S., Scher J.U., Djukovic A., Jiménez N., Littman D.R., Abramson S.B., Pamer E.G., Ubeda C. Shortand long-term effects of oral vancomycin on the human intestinal microbiota. J. Antimicrob. Chemother. 2017; 72 (1): 128-136. DOI: 10.1093/jac/dkw383. PMID: 27707993

91. Buffie C.G., Jarchum I., Equinda M., Lipuma L., Gobourne A., Viale A., Ubeda C., Xavier J., Pamer E.G. Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis. Infect. Immun. 2012; 80 (1): 62–73. DOI: 10.1128/IAI.05496-11. PMID: 22006564

92. Deshmukh H.S., Liu Y., Menkiti O.R., Mei J., Dai N., O’Leary C.E., Oliver P.M., Kolls J.K., Weiser J.N., Worthen G.S. The microbiota regulates neutrophil homeostasis and host resistance to Escherichia coli K1 sepsis in neonatal mice. Nat. Med. 2014; 20 (5): 524-530. DOI: 10.1038/nm.3542. PMID: 24747744

93. Singer M., Glynne P. Treating critical illness: the importance of first doing no harm. PLoS Med. 2005; 2 (6): e167. DOI: 10.1371/journal.pmed.0020167. PMID: 15971943

94. Manzanares W., Langlois P.L., WischmeyerP.E. Restoring the microbiome in critically ill patients: are probiotics our true friends when we are seriously ill? JPEN. J. Parenter. Enteral Nutr. 2017; 41 (4): 530-533. DOI: 10.1177/0148607117700572. PMID: 28445681

95. Lankelma J.M., Cranendonk D.R., Belzer C., de Vos A.F., de Vos W.M., van der Poll T., Wiersinga W.J. Antibiotic-induced gut microbiota disruption during human endotoxemia: a randomised controlled study. Gut. 2017; 66 (9): 1623-1630. DOI: 10.1136/gutjnl-2016-312132. PMID: 27307305

96. Panigrahi P., Chandel D.S., Hansen N.I., Sharma N., Kandefer S., Parida S., Satpathy R., Pradhan L., Mohapatra A., Mohapatra S.S., Misra P.R., Banaji N., Johnson J.A., Morris J.G.Jr., Gewolb I.H., Chaudhry R. Neonatal sepsis in rural India: timing, microbiology and antibiotic resistance in a population-based prospective study in the community setting. J. Perinatol. 2017; 37 (8): 911-921. DOI: 10.1038/jp.2017.67. PMID: 28492525

97. Manzanares W., Lemieux M., Langlois P.L., Wischmeyer P.E. Probiotic and synbiotic therapy in critical illness: a systematic review and meta-analysis. Crit. Care. 2016; 19: 262. DOI: 10.1186/s13054-016-1434-y. PMID: 27538711

98. Kasatpibal N., Whitney J.D., Saokaew S., Kengkla K., Heitkemper M.M., Apisarnthanarak A. Effectiveness of probiotic, prebiotic, and synbiotic therapies in reducing postoperative complications: a systematic review and network meta-analysis. Clin. Infect. Dis. 2017; 64 (Suppl 2): S153S160. DOI: 10.1093/cid/cix114. PMID: 28475793

99. Klingensmith N.J., Coopersmith C.M. The gut as the motor of multiple organ dysfunction in critical illness. Crit. Care Clin. 2016; 32 (2): 203– 212. DOI: 10.1016/j.ccc.2015.11.004. PMID: 27016162

100. Brenner T., Decker S.O., Grumaz S., Stevens P., Bruckner T., Schmoch T., Pletz M.W., Bracht H., Hofer S., Marx G., Weigand M.A., Sohn K.; TIFOnet Critical Care Trials Group. Next-generation sequencing diagnostics of bacteremia in sepsis (Next GeneSiS-Trial): study protocol of a prospective, observational, noninterventional, multicenter, clinical trial. Medicine (Baltimore). 2018; 97 (6): e9868. DOI: 10.1097/MD.0000000000009868. PMID: 29419698

101. Besselink M.G., van Santvoort H.C., Buskens E., Boermeester M.A., van Goor H., Timmerman H.M., Nieuwenhuijs V.B., Bollen T.L., van Ramshorst B., Witteman B.J., Rosman C., Ploeg R.J., Brink M.A., Schaapherder A.F., Dejong C.H., Wahab P.J., van Laarhoven C.J., van der Harst E., van Eijck C.H., Cuesta M.A., Akkermans L.M., Gooszen H.G.; Dutch Acute Pancreatitis Study Group. Probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trial. Lancet. 2008; 371 (9613): 651-659. DOI: 10.1016/S0140-6736(08)60207-X. PMID: 18279948

102. Bongaerts G.P., Severijnen R.S. A reassessment of the PROPATRIA study and its implications for probiotic therapy. Nat. Biotechnol. 2016; 34 (1): 55–63. DOI: 10.1038/nbt.3436. PMID: 26744983

103. van Nood E., Speelman P., Nieuwdorp M., Keller J. Fecal microbiota transplantation: facts and controversies. Curr. Opin. Gastroenterol. 2014; 30 (1): 34-39. DOI: 10.1097/MOG.0000000000000024. PMID: 24241245

104. Han S., Shannahan S., Pellish R. Fecal microbiota transplant: treatment options for Clostridium difficile infection in the intensive care unit. J. Intensive Care Med. 2015; 31 (9): 577–586. DOI: 10.1177/0885066615594344. PMID: 26141116

105. Moayyedi P., Yuan Y., Baharith H., Ford A.C. Faecal microbiota transplantation for Clostridium difficile-associated diarrhoea: a systematic review of randomised controlled trials. Med. J. Aust. 2017; 207 (4): 166-172. DOI: 10.5694/mja17.00295. PMID: 28814204

106. McClave S.A., Patel J., Bhutiani N. Should fecal microbial transplantation be used in the ICU? Curr. Opin. Crit. Care. 2018; 24 (2): 105-111. DOI: 10.1097/MCC.0000000000000489. PMID: 29432297

107. Price R., MacLennan G., Glen J.; SuDDICU Collaboration. Selective digestive or oropharyngeal decontamination and topical oropharyngeal chlorhexidine for prevention of death in general intensive care: systematic review and network meta-analysis. BMJ. 2014; 348: g2197. DOI: 10.1136/bmj.g2197. PMID: 24687313

108. Buelow E., Bello González T.D.J., Fuentes S., de Steenhuijsen Piters W.A.A., Lahti L., Bayjanov J.R., Majoor E.A.M., Braat J.C., van Mourik M.S.M., Oostdijk E.A.N., Willems R.J.L., Bonten M.J.M., van Passel M.W.J., Smidt H., van Schaik W. Comparative gut microbiota and resistome profiling of intensive care patients receiving selective digestive tract decontamination and healthy subjects. Microbiome. 2017; 5 (1): 88. DOI: 10.1186/s40168-017-0309-z. PMID: 28803549

109. Dickson R.P. The microbiome and critical illness. Lancet Respir. Med. 2016; 4 (1): 59-72. DOI: 10.1016/S2213-2600(15)00427-0. PMID: 26700442


Рецензия

Для цитирования:


Черневская Е.А., Белобородова Н.В. Микробиота кишечника при критических состояниях (обзор). Общая реаниматология. 2018;14(5):96-119. https://doi.org/10.15360/1813-9779-2018-5-96-119

For citation:


Chernevskaya E.A., Beloborodova N.V. Gut Microbiome in Critical Illness (Review). General Reanimatology. 2018;14(5):96-119. https://doi.org/10.15360/1813-9779-2018-5-96-119

Просмотров: 2216


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)