Preview

General Reanimatology

Advanced search

Gut Microbiome in Critical Illness (Review)

https://doi.org/10.15360/1813-9779-2018-5-96-119

Abstract

Radical changes in the composition, diversity and metabolic activity of gut microbiome in critically ill patients most probably affect adversely the outcome of treatment. Microbiota dysfunction may be a predictor and presumably the main cause of infectious complications and sepsis. Clinicists use objective scales for evaluation of patient condition severity including specific parameters of disorders of organs and systems; however, microbiota function is not considered specific and, hence, not evaluated. Technical capabilities of the recent decade have allowed characterizing the intestinal microbiota and that helped understanding the ongoing processes. The authors have analyzed data about the role of intestinal microbiota as a metabolic 'reactor' during critical states, possible complications related to misbalance of 'harmful' and 'beneficial' bacteria, and examined potential of a targeted therapy aimed directly at correction of intestinal microbiota. Search for papers was carried out using Scopus and Web of Science databases 2001 to 2018 years: (Gut Microbiota) AND (Critically ill OR Intensive care unit), key words taken for the search were: intestinal microbiota, metabolism, sepsis, antibiotics, critically ill patients, multiple organ failure. A number of questions in understanding of the interaction between gut microbiome and host remain open. It is necessary to take into account interference of microbial metabolism while assessing metabolome of patients with sepsis. Among low-molecular compounds found in blood of sepsis patients, special attention should be paid to molecules that can be classified as ‘common metabolites’ of humans and bacteria, for example, degradation products of aromatic compounds, which many-fold rise in blood of septic patients. It is necessary to take into consideration and experimentally model changes in the human internal environment, which occur during radical transformation of microbiome in critically ill patients. Such approach brings in new prospects for objective monitoring of diseases by evaluating metabolic profile at a particular moment of time based on integral indices reflecting the status of microbiome/metabolome system, which will supply new targets for therapeutic intervention in future.

About the Authors

E. A. Chernevskaya
V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation

Ekaterina A. Chernevskaya

25 Petrovka Str., Bldg. 2, 107031 Moscow




N. V. Beloborodova
V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation

Natalia V. Beloborodova

25 Petrovka Str., Bldg. 2, 107031 Moscow




References

1. Beloborodova N.V. Sepsis metabolomic approach. Moscow: Meditsinskoe Informatsionnoe Agentstvo; 2018: 272. ISBN 978-5-9986-0350-1. [In Russ.]

2. Schmidt K., Mwaigwisya S., Crossman L.C., Doumith M., Munroe D., Pires C., Khan A.M., Woodford N., Saunders N.J., Wain J., O’Grady J., Livermore D.M. Identification of bacterial pathogens and antimicrobial resistance directly from clinical urines by nanopore-based metagenomic sequencing. J. Antimicrob. Chemother. 2017; 72 (1): 104–114. DOI: 10.1093/jac/dkw397. PMID: 27667325

3. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012; 486 (7402): 207–214. DOI: 10.1038/nature11234. PMID: 22699609

4. Berg R.D. The indigenous gastrointestinal microflora. Trends Microbiol. 1996; 4 (11): 430–435. DOI: 10.1016/0966-842X(96)10057-3. PMID: 8950812

5. Kelly D., Mulder I.E. Microbiome and immunological interactions. Nutr. Rev. 2012; 70 (Suppl 1): S18-S30. DOI: 10.1111/j.17534887.2012.00498.x. PMID: 22861803

6. Proctor L.M. The Human Microbiome Project in 2011 and beyond. Cell Host. Microbe. 2011; 10 (4): 287-291. DOI:10.1016/j.chom.2011.10.001. PMID: 22018227

7. Franzosa E.A., Huang K., Meadow J.F., Gevers D., Lemon K.P., Bohannan B.J., Huttenhower C. Identifying personal microbiomes using metagenomic codes. Proc. Natl. Acad. Sci. USA. 2015; 112 (22): E2930-E2938. DOI: 10.1073/pnas.1423854112. PMID: 25964341

8. Turnbaugh P.J., Hamady M., Yatsunenko T., Cantarel B.L., Duncan A., Ley R.E., Sogin M.L., Jones W.J., Roe B.A., Affourtit J.P., Egholm M., Henrissat B., Heath A.C., Knight R., Gordon J.I. A core gut microbiome in obese and lean twins. Nature. 2009; 457 (7228): 480–484. DOI: 10.1038/nature07540. PMID: 19043404

9. Sekirov I., Russell S.L., Antunes L.C., Finlay B.B. Gut microbiota in health and disease. Physiol. Rev. 2010; 90 (3): 859–904. DOI: 10.1152/physrev.00045.2009. PMID: 20664075

10. Cho I., Blaser M.J. The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 2012; 13 (4): 260-270. DOI: 10.1038/nrg3182. PMID: 22411464

11. Lepage P., Leclerc M.C., Joossens M., Mondot S., Blottière H.M., Raes J., Ehrlich D., Doré J. A metagenomic insight into our gut’s microbiome. Gut. 2013; 62 (1): 146-158. DOI: 10.1136/gutjnl-2011-301805. PMID: 22525886

12. Turnbaugh P.J., Ley R.E., Mahowald M.A., Magrini V., Mardis E.R., Gordon J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006; 444 (7122): 1027–1031. DOI: 10.1038/nature05414. PMID: 17183312

13. Mariat D., Firmesse O., Levenez F., Guimar°es V., Sokol H., Doré J., Corthier G., Furet J.P. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009; 9: 123. DOI: 10.1186/1471-2180-9-123. PMID: 19508720

14. Tyakht A.V., Kostryukova E.S., Popenko A.S., Belenikin M.S., Pavlenko A.V., Larin A.K., Karpova I.Y., Selezneva O.V., Semashko T.A., Ospanova E.A., Babenko V.V., Maev I.V., Cheremushkin S.V., Kucheryavyy Y.A., Shcherbakov P.L., Grinevich V.B., Efimov O.I., Sas E.I., Abdulkhakov R.A., Abdulkhakov S.R., Lyalyukova E.A., Livzan M.A., Vlassov V.V., Sagdeev R.Z., Tsukanov V.V., Osipenko M.F., Kozlova I.V., Tkachev A.V., Sergienko V.I., Alexeev D.G., Govorun V.M. Human gut microbiota community structures in urban and rural populations in Russia. Nat. Commun. 2013; 4: 2469. DOI: 10.1038/ncomms3469. PMID: 24036685

15. Insoft R.M., Sanderson I.R., Walker W.A. Development of immune function in the intestine and its role in neonatal diseases. Pediatr. Clin. North Am. 1996; 43 (2): 551-571. DOI: 10.1016/S0031-3955(05)70420-X. PMID: 8614615

16. Tamburini S., Shen N., Wu H.C., Clemente J.C. The microbiome in early life: implications for health outcomes. Nat. Med. 2016; 22 (7): 713-722. DOI: 10.1038/nm.4142. PMID: 27387886

17. Schirmer M., Smeekens S.P., Vlamakis H., Jaeger M., Oosting M., Franzosa E.A., Horst R.T., Jansen T., Jacobs L., Bonder M.J., Kurilshikov A., Fu J., Joosten L., Zhernakova A., Huttenhower C., Wijmenga C., Netea M.G., Xavier R.J. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell. 2016; 167 (7): 1897. DOI: 10.1016/j.cell.2016.11.046. PMID: 27984736

18. Ohnmacht C. Microbiota, regulatory T cell subsets, and allergic disorders. Allergo J. Int. 2016; 25 (5): 114–123. DOI: 10.1007/s40629-016-0118-0. PMID: 27656354

19. Donia M.S., Fischbach M.A. Small molecules from the human microbiota science. Science. 2015; 349 (6246): 1254766. DOI: 10.1126/science.1254766. PMID: 26206939

20. Thorburn A.N., Macia L., Mackay C.R. Diet, metabolites, and «westernlifestyle» inflammatory diseases. Immunity. 2014; 40 (6): 833-842. DOI: 10.1016/j.immuni.2014.05.014. PMID: 24950203

21. Wikoff W.R., Anfora A.T., Liu J., Schultz P.G., Lesley S.A., Peters E.C., Siuzdak G. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl. Acad. Sci. USA. 2009; 10; 106 (10): 3698-3703. DOI: 10.1073/pnas.0812874106. PMID: 19234110

22. Blaser M.J., Falkow S. What are the consequences of the disappearing human microbiota? Nat. Rev. Microbiol. 2009; 7 (12): 887-894. DOI: 10.1038/nrmicro2245. PMID: 19898491

23. Biedermann L., Rogler G. The intestinal microbiota: its role in health and disease. Eur. J. Pediatr. 2015; 174 (2): 151-167. DOI: 10.1007/s00431014-2476-2. PMID: 25563215

24. Beloborodova N.V. Integration of metabolism in man and his microbiome in critical conditions. Obshchaya Reanimatologiya = General Reanimatology. 2012; 8 (4): 42-54. DOI: 10.15360/1813-9779-2012-4-42. [In Russ., In Engl.]

25. Haak B.W., Levi M., WiersingaW.J. Microbiota-targeted therapies on the intensive care unit. Curr. Opin. Crit. Care. 2017; 23 (2): 167-174. DOI: 10.1097/MCC.0000000000000389. PMID: 28092309

26. Marshall J.C. Gastrointestinal flora and its alterations in critical illness. Curr. Opin. Clin. Nutr. Metab. Care. 1999; 2 (5): 405-411. DOI: 10.1097/00075197-199909000-00009. PMID: 10589383

27. Alverdy J.C., Laughlin R.S., Wu L. Influence of the critically ill state on host-pathogen interactions within the intestine: gut-derived sepsis redefined. Crit. Care Med. 2003; 31 (2): 598-607. DOI: 10.1097/01.CCM.0000045576.55937.67. PMID: 12576972

28. Lapichino G., Callegari M.L., Marzorati S., Cigada M., Corbella D., Ferrari S., Morelli L. Impact of antibiotics on the gut microbiota of critically ill patients. J. Med. Microbiol. 2008; 57 (Pt 8): 1007-1014. DOI: 10.1099/jmm.0.47387-0. PMID: 18628503

29. Zaborin A., Smith D., Garfield K., Quensen J., Shakhsheer B., Kade M., Tirrell M., Tiedje J., Gilbert J.A., Zaborina O., Alverdy J.C. Membership and behavior of ultra-low-diversity pathogen communities present in the gut of humans during prolonged critical illness. MBio. 2014; 5 (5): e0136114. DOI: 10.1128/mBio.01361-14. PMID: 25249279

30. Stiefel U., Donskey C.J. The role of the intestinal tract as a source for transmission of nosocomial pathogens. Curr. Infect. Dis. Rep. 2004; 6 (6): 420-425. DOI: 10.1007/s11908-004-0060-z. PMID: 15538978

31. Ojima M., Motooka D., Shimizu K., Gotoh K., Shintani A., Yoshiya K., Nakamura S., Ogura H., Iida T., Shimazu T. Metagenomic analysis reveals dynamic changes of whole gut microbiota in the acute phase of intensive care unit patients. Dig. Dis. Sci. 2016; 61 (6): 1628-1634. DOI: 10.1007/s10620-015-4011-3. PMID: 26715502

32. McDonald D., Ackermann G., Khailova L., Baird C., Heyland D., Kozar R., Lemieux M., Derenski K., King J., Vis-Kampen C., Knight R., Wischmeyer P.E. Extreme dysbiosis of the microbiome in critical illness. mSphere. 2016; 1 (4): e00199-16. DOI: 10.1128/mSphere.00199-16. PMID: 27602409

33. Chernevskaya E., Beloborodova N., Bedova A., Pautova A., Klimenko N., Tyakht A., Gusarov V. The gut microbiota disturbances in ICU patients with nosocomial pneumonia. Infection. 2017; 45 (Suppl 1): 37-38. DOI: 10.1007/s15010-017-1046-8. PMID: 28799000

34. Säemann M.D., Böhmig G.A., Zlabinger G.J. Short-chain fatty acids: bacterial mediators of a balanced host-microbial relationship in the human gut. Wien Klin. Wochenschr. 2002; 114 (8-9): 289 –300. PMID: 12212362

35. Blottière H.M., Buecher B., Galmiche J.P., Cherbut C. Molecular analysis of the effect of short-chain fatty acids on intestinal cell proliferation. Proc. Nutr. Soc. 2003; 62 (1): 101-106. DOI: 10.1079/PNS2002215. PMID: 12740064

36. Yin L., Laevsky G., Giardina C. Butyrate suppression of colonocyte NF-kappa B activation and cellular proteasome activity. J. Biol. Chem. 2001; 276 (48): 44641–44646. DOI: 10.1074/jbc.M105170200. PMID: 11572859

37. Heerdt B.G., Houston M.A., Augenlicht L.H. Short-chain fatty acid-initiated cell cycle arrest and apoptosis of colonic epithelial cells is linked to mitochondrial function. Cell Growth Differ. 1997; 8 (5): 523–532. PMID: 9149903

38. Shimizu K., Ogura H., Goto M., Asahara T., Nomoto K., Morotomi M., Yoshiya K., Matsushima A., Sumi Y., Kuwagata Y., Tanaka H., Shimazu T., Sugimoto H. Altered gut flora and environment in patients with severe SIRS. J. Trauma. 2006; 60 (1): 126133. DOI: 10.1097/01.ta.0000197374.99755.fe. PMID: 16456446

39. Zoetendal E.G., Raes J., van den Bogert B., Arumugam M., Booijink C.C., Troost F.J., Bork P., Wels M., de Vos W.M., Kleerebezem M. The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. ISME J. 2012; 6 (7): 1415-1426. DOI: 10.1038/ismej.2011.212. PMID: 22258098

40. Levy M., Blacher E., Elinav E. Microbiome, metabolites and host immunity. Curr. Opin. Microbiol. 2017; 35: 8–15. DOI: 10.1016/j.mib.2016.10.003. PMID: 27883933

41. Beloborodova N.V., Olenin A.Y., Pautova A.K. Metabolomic findings in sepsis as a damage of host-microbial metabolism integration. J. Crit. Care. 2018; 43: 246-255. DOI: 10.1016/j.jcrc.2017.09.014. PMID: 28942199

42. Agus A., Planchais J., Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host. Microbe. 2018; 23 (6): 716724. DOI: 10.1016/j.chom.2018.05.003. PMID: 29902437

43. Fedotcheva N.I., Kazakov R.E., Kondrashova M.N., Beloborodova N.V. Toxic effects of microbial phenolic acids on the functions of mitochondria. Toxicol. Lett. 2008; 180 (3): 182-188. DOI: 10.1016/j.toxlet.2008.06.861. PMID: 18634861

44. Beloborodova N.V., Moroz V.V., Bedova A.Yu., Osipov A.A., Sarshor Yu.N., Chernevskaya E.A. Participation of aromatic microbial metabolites in the development of severe infection and sepsis. Anesteziologiya i Reanimatologiya. 2016; 61 (3): 202-208. DOI: 10.18821/0201-7563-2016-3-202208. PMID: 29465205. [In Russ.]

45. Fedotcheva N.I., Chernevskaya E.A., Beloborodova N.V. The role of bacterial phenolic metabolites in mitochondrial dysfunction. Crit. Care. 2016; 20 (Suppl 1): P4. DOI: 10.1186/s13054-016-1204-x. PMID: 26996981

46. Moroz V.V., Beloborodova N.V., Osipov A.A., Vlasenko A.V., Bedova A.Y., Pautova A.K. Phenylcarboxylic acids in the assessment of the severity of patient condition and the efficiency of intensive treatment in critical care medicine. Obshchaya Reanimatologiya = General Reanimatology. 2016; 12 (4): 37-48. DOI: 10.15360/1813-9779-2016-4-37-48. [In Russ., In Engl.]

47. Khodakova A.S., Beloborodova N.V. Microbial metabolites in the blood of patients with sepsis. Crit. Care. 2007; 11 (Suppl 4): 5. DOI: 10.1186/cc5150

48. Valerio F., Lavermicocca P., Pascale M., Visconti A. Production of phenyllactic acid by lactic acid bacteria: an approach to the selection of strains contributing to food quality and preservation. FEMS Microbiol. Lett. 2004; 233 (2): 289-295. DOI: 10.1016/j.femsle.2004.02.020. PMID: 15063498

49. Zhao H., Jiang Z., Chang X., Xue H., Yahefu W., Zhang X. 4-Hydroxyphenylacetic acid prevents acute APAP-induced liver injury by increasing phase II and antioxidant enzymes in mice. Front. Pharmacol. 2018; 9: 653. DOI: 10.3389/fphar.2018.00653. PMID: 29973881

50. Jenner A.M., Rafter J., Halliwell B. Human fecal water content of phenolics: the extent of colonic exposure to aromatic compounds. Free Radic. Biol. Med. 2005; 38 (6): 763-772. DOI: 10.1016/j.freeradbiomed.2004.11.020. PMID: 15721987

51. Beloborodova N.V., Moroz V.V., Osipov A.A., Bedova A.Y., Olenin A.Y., Getsina M.L., Karpova O.V., Olenina E.G. Normal level of sepsis-associated phenylcarboxylic acids in human serum. Biochemistry (Mosc.). 2015; 80 (3): 374-378. DOI: 10.1134/S0006297915030128. PMID: 25761691. [In Russ., In Engl.]

52. Beloborodova N., Moroz V., Osipov A., Bedova A., Sarshor Y., Vlasenko A., Olenin A. Tyrosine metabolism disorder and the potential capability of anaerobic microbiota to decrease the value of aromatic metabolites in critically ill patients. Crit. Care. 2014; 18 (Suppl 2): 42-44. DOI: 10.1186/cc14063

53. Rogers A.J., McGeachie M., Baron R.M., Gazourian L., Haspel J.A., Nakahira K., Fredenburgh L.E., Hunninghake G.M., Raby B.A., Matthay M.A., Otero R.M., Fowler V.G., Rivers E.P., Woods C.W., Kingsmore S., Langley R.J., Choi A.M. Metabolomic derangements are associated with mortality in critically ill adult patients. PLoS One. 2014; 9 (1): e87538. DOI: 10.1371/journal.pone.0087538. PMID: 24498130

54. Dovrolis N., Kolios G., Spyrou G.M., Maroulakou I. Computational profiling of the gut-brain axis: microflora dysbiosis insights to neurological disorders. Brief Bioinform. 2017; Nov 27. [Epub ahead of print]. DOI: 10.1093/bib/bbx154. PMID: 29186317

55. Carabotti M., Scirocco A., Maselli M.A., Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. 2015; 28 (2): 203-209. PMID: 25830558

56. Singh V., Roth S., Llovera G., Sadler R., Garzetti D., Stecher B., Dichgans M., Liesz A. Microbiota dysbiosis controls the neuroinflammatory response after stroke. J. Neurosci. 2016; 36 (28): 7428–7440. DOI: 10.1523/JNEUROSCI.1114-16.2016. PMID: 27413153

57. Stanley D., Mason L.J., Mackin K.E., Srikhanta Y.N., Lyras D., Prakash M.D., Nurgali K., Venegas A., Hill M.D., Moore R.J., Wong C.H. Translocation and dissemination of commensal bacteria in poststroke infection. Nat. Med. 2016; 22 (11): 1277–1284. DOI: 10.1038/nm.4194. PMID: 27694934

58. Benakis C., Brea D., Caballero S., Faraco G., Moore J., Murphy M., Sita G., Racchumi G., Ling L., Pamer E.G., Iadecola C., Anrather J. Commensal mic robiota affects ischemic stroke outcome by regulating intestinal γδ T cells. Nat. Med. 2016; 22 (5): 516-523. DOI: 10.1038/nm.4068. PMID: 27019327

59. Braniste V., Asmakh M., Kowal C., Anuar F., Abbaspour A., Tóth M., Korecka A., Bakocevic N., Ng L.G., Kundu P., Gulyás B., Halldin C., Hultenby K., Nilsson H., Hebert H., Volpe B.T., Diamond B., Pettersson S. The gut microbiota influences blood-brain barrier permeability in mice. Sci. Transl. Med. 2014; 6 (263): 263ra158. DOI: 10.1126/scitranslmed.3009759. PMID: 25411471

60. Fung T.C., Olson C.A., Hsiao E.Y. Interactions between the microbiota, immune and nervous systems in health and disease. Nat. Neurosci. 2017; 20 (2): 145-155. DOI: 10.1038/nn.4476. PMID: 28092661

61. Kau A.L., Ahern P.P., Griffin N.W., Goodman A.L., Gordon J.I. Human nutrition, the gut microbiome and the immune system. Nature. 2011; 474 (7351): 327-336. DOI: 10.1038/nature10213. PMID: 21677749

62. Bravo J.A., Forsythe P., Chew M.V., Escaravage E., Savignac H.M., Dinan T.G., Bienenstock J., Cryan J.F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA. 2011; 108 (38): 1605016055. DOI: 10.1073/pnas.1102999108. PMID: 21876150

63. Foster J.A., McVey Neufeld K.A. Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 2013; 36 (5): 305-312. DOI: 10.1016/j.tins.2013.01.005. PMID: 23384445

64. DeLegge M.H., Smoke A. Neurodegeneration and inflammation. Nutr. Clin. Pract. 2008; 23 (1): 35-41. DOI: 10.1177/011542650802300135. PMID: 18203962

65. Chaudhry N., Duggal A.K. Sepsis associated encephalopathy. Adv. Med. 2014: 2014: 762320. DOI: 10.1155/2014/762320. PMID: 26556425

66. Beloborodova N.V., Ostrova I.V. Sepsis-associated encephalopathy (review). Obshchaya Reanimatologiya = General Reanimatology. 2017; 13 (5): 121-139. DOI: 10.15360/1813-9779-2017-5-121-139. [In Russ., In Engl.]

67. Oleskin A.V., Shenderov B.A. Neuromodulatory effects and targets of the SCFAs and gasotransmitters produced by the human symbiotic microbiota. Microb. Ecol. Health Dis. 2016; 27: 30971. DOI: 10.3402/mehd.v27.30971. PMID: 27389418

68. DaSilva N.A., Nahar P.P., Ma H., Eid A., Wei Z., Meschwitz S., Zawia N.H., Slitt A.L., Seeram N.P. Pomegranate ellagitannin-gut microbial-derived metabolites, urolithins, inhibit neuroinflammation in vitro. Nutr. Neurosci. 2017; 7: 1-11. DOI: 10.1080/1028415X.2017.1360558. PMID: 28784051

69. Yissachar N., Zhou Y., Ung L., Lai N.Y., Mohan J.F., Ehrlicher A., Weitz D.A., Kasper D.L., Chiu I.M., Mathis D., Benoist C. An intestinal organ culture system uncovers a role for the nervous system in microbe-immune crosstalk. Cell. 2017; 168 (6): 1135-1148. e12. DOI: 10.1016/j.cell.2017.02.009. PMID: 28262351

70. Annane D., Sharshar T. Cognitive decline after sepsis. Lancet Respir. Med. 2015; 3 (1): 61-69. DOI: 10.1016/S2213-2600(14)70246-2. PMID: 25434614

71. Basler T., Meier-Hellmann A., Bredle D., Reinhart K. Amino acid imbalance early in septic encephalopathy. Intensive Care Med. 2002; 28 (3): 293–298. DOI: 10.1007/s00134-002-1217-6. PMID: 11904658

72. Beloborodova N.V., Khodakova A.S., Bairamov I.T., Olenin A.Yu. Microbial origin of phenylcarboxylic acids in the human body. Biochemistry (Mosc.). 2009; 74 (12): 1350-1355. PMID: 19961416. [In Russ., In Engl.]

73. Beloborodova N.V., Bairamov I.T., Olenin A.Yu., Fedotcheva N.I. Exometabolites of some anaerobic microorganisms of human microflora. Biomeditsinskaya Khimiya. 2011; 57 (1): 95—105. DOI: 10.18097/pbmc20115701095. PMID: 21516781. [In Russ.]

74. Mizock B.A., Sabelli H.C., Dubin A., Javaid J.I., Poulos A., Rackow E.C. Еvidence for altered phenylalanine metabolism and comparison with hepatic encephalopathy. Arch. Intern. Med. 1990; 150 (2): 443-449. PMID: 2302019

75. Williams R.A., Mamotte C.D., Burnett J.R. Phenylketonuria: an inborn error of phenyl-alanine metabolism. Clin. Biochem. Rev. 2008; 29 (1): 3141. PMID: 18566668

76. O’Mahony S.M., Clarke G., Borre Y.E., Dinan T.G., Cryan J.F. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res. 2015; 277: 32-48. DOI: 10.1016/j.bbr.2014.07.027. PMID: 25078296

77. Budden K.F., Gellatly S.L., Wood D.L., Cooper M.A., Morrison M., Hugenholtz P., Hansbro P.M. Emerging pathogenic links between microbiota and the gut-lung axis. Nat. Rev. Microbiol 2017; 15 (1): 55–63. DOI: 10.1038/nrmicro.2016.142. PMID: 27694885

78. Deitch E.A., Xu D.Z., Lu Q. Gut lymph hypothesis of early shock and traumainduced multiple organ dysfunction syndrome: a new look at gut origin sepsis. J. Organ Dysfunct. 2006; 2: 70–79. DOI: 10.1080/17471060600551772

79. Reino D.C., Pisarenko V., Palange D., Doucet D., Bonitz R.P., Lu Q., Colorado I., Sheth S.U., Chandler B., Kannan K.B., Ramanathan M., Xu D.Z., Deitch E.A., Feinman R. Trauma hemorrhagic shock-induced lung injury involves a gut-lymph-induced TLR4 pathway in mice. PLoS One. 2011; 6 (8): e14829. DOI: 10.1371/journal.pone.0014829. PMID: 21829592

80. Schuijt T.J., Lankelma J.M., Scicluna B.P., de Sousa e Melo F., Roelofs J.J., de Boer J.D., Hoogendijk A.J., de Beer R., de Vos A., Belzer C., de Vos W.M., van der Poll T., Wiersinga W.J. The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut. 2016; 65 (4): 575–583. DOI: 10.1136/gutjnl-2015-309728. PMID: 26511795

81. Gray J., Oehrle K., Worthen G., Alenghat T., Whitsett J., Deshmukh H. Intestinal commensal bacteria mediate lung mucosal immunity and promote resistance of newborn mice to infection. Sci. Transl. Med. 2017; 9 (376): eaaf9412. DOI: 10.1126/scitranslmed.aaf9412. PMID: 28179507

82. Dickson R.P., Singer B.H., Newstead M.W., Falkowski N.R., Erb-Downward J.R., Standiford T.J., Huffnagle G.B. Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome. Nat. Microbiol. 2016; 1 (10): 16113. DOI: 10.1038/nmicrobiol.2016.113. PMID: 27670109

83. Jacobs M.C., Haak B.W., Hugenholtz F., Wiersinga W.J. Gut microbiota and host defense in critical illness. Curr. Opin. Crit. Care. 2017; 23 (4): 257-263. DOI: 10.1097/MCC.0000000000000424. PMID: 28548992

84. Rogler G., Rosano G. The heart and the gut. Eur. Heart J. 2014; 35 (7): 426-430. DOI: 10.1093/eurheartj/eht271. PMID: 23864132

85. Pathan N., Burmester M., Adamovic T., Berk M., Ng K.W., Betts H., Macrae D., Waddell S., Paul-Clark M., Nuamah R., Mein C., Levin M., Montana G., Mitchell J.A. Intestinal injury and endotoxemia in children undergoing surgery for congenital heart disease. Am. J. Respir. Crit. Care Med. 2011; 184 (11): 1261-1269. DOI: 10.1164/rccm.201104-0715OC. PMID: 21868501

86. Lam V., Su J., Hsu A., Gross G.J., Salzman N.H., Baker J.E. Intestinal microbial metabolites are linked to severity of myocardial infarction in rats. PLoS One. 2016; 11 (8): e0160840. DOI: 10.1371/journal.pone.0160840. PMID: 27505423

87. Vincent J.L., Rello J., Marshall J., Silva E., Anzueto A., Martin C.D., Moreno R., Lipman J., Gomersall C., Sakr Y., Reinhart K.; EPIC II Group of Investigators. International study of the prevalence and outcomes of infection in intensive care units. JAMA. 2009; 302 (21): 2323-2329. DOI: 10.1001/jama.2009.1754. PMID: 19952319

88. Wischmeyer P.E., McDonald D., Knight R. Role of the microbiome, probiotics, and “dysbiosis therapy” in critical illness. Curr. Opin. Crit. Care. 2016; 22 (4): 347-353. DOI: 10.1097/MCC.0000000000000321. PMID: 27327243

89. Dethlefsen L., Relman D.A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl. Acad. Sci. USA. 2011; 108 (Suppl 1): 4554–4561. DOI: 10.1073/pnas.1000087107. PMID: 20847294

90. Isaac S., Scher J.U., Djukovic A., Jiménez N., Littman D.R., Abramson S.B., Pamer E.G., Ubeda C. Shortand long-term effects of oral vancomycin on the human intestinal microbiota. J. Antimicrob. Chemother. 2017; 72 (1): 128-136. DOI: 10.1093/jac/dkw383. PMID: 27707993

91. Buffie C.G., Jarchum I., Equinda M., Lipuma L., Gobourne A., Viale A., Ubeda C., Xavier J., Pamer E.G. Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis. Infect. Immun. 2012; 80 (1): 62–73. DOI: 10.1128/IAI.05496-11. PMID: 22006564

92. Deshmukh H.S., Liu Y., Menkiti O.R., Mei J., Dai N., O’Leary C.E., Oliver P.M., Kolls J.K., Weiser J.N., Worthen G.S. The microbiota regulates neutrophil homeostasis and host resistance to Escherichia coli K1 sepsis in neonatal mice. Nat. Med. 2014; 20 (5): 524-530. DOI: 10.1038/nm.3542. PMID: 24747744

93. Singer M., Glynne P. Treating critical illness: the importance of first doing no harm. PLoS Med. 2005; 2 (6): e167. DOI: 10.1371/journal.pmed.0020167. PMID: 15971943

94. Manzanares W., Langlois P.L., WischmeyerP.E. Restoring the microbiome in critically ill patients: are probiotics our true friends when we are seriously ill? JPEN. J. Parenter. Enteral Nutr. 2017; 41 (4): 530-533. DOI: 10.1177/0148607117700572. PMID: 28445681

95. Lankelma J.M., Cranendonk D.R., Belzer C., de Vos A.F., de Vos W.M., van der Poll T., Wiersinga W.J. Antibiotic-induced gut microbiota disruption during human endotoxemia: a randomised controlled study. Gut. 2017; 66 (9): 1623-1630. DOI: 10.1136/gutjnl-2016-312132. PMID: 27307305

96. Panigrahi P., Chandel D.S., Hansen N.I., Sharma N., Kandefer S., Parida S., Satpathy R., Pradhan L., Mohapatra A., Mohapatra S.S., Misra P.R., Banaji N., Johnson J.A., Morris J.G.Jr., Gewolb I.H., Chaudhry R. Neonatal sepsis in rural India: timing, microbiology and antibiotic resistance in a population-based prospective study in the community setting. J. Perinatol. 2017; 37 (8): 911-921. DOI: 10.1038/jp.2017.67. PMID: 28492525

97. Manzanares W., Lemieux M., Langlois P.L., Wischmeyer P.E. Probiotic and synbiotic therapy in critical illness: a systematic review and meta-analysis. Crit. Care. 2016; 19: 262. DOI: 10.1186/s13054-016-1434-y. PMID: 27538711

98. Kasatpibal N., Whitney J.D., Saokaew S., Kengkla K., Heitkemper M.M., Apisarnthanarak A. Effectiveness of probiotic, prebiotic, and synbiotic therapies in reducing postoperative complications: a systematic review and network meta-analysis. Clin. Infect. Dis. 2017; 64 (Suppl 2): S153S160. DOI: 10.1093/cid/cix114. PMID: 28475793

99. Klingensmith N.J., Coopersmith C.M. The gut as the motor of multiple organ dysfunction in critical illness. Crit. Care Clin. 2016; 32 (2): 203– 212. DOI: 10.1016/j.ccc.2015.11.004. PMID: 27016162

100. Brenner T., Decker S.O., Grumaz S., Stevens P., Bruckner T., Schmoch T., Pletz M.W., Bracht H., Hofer S., Marx G., Weigand M.A., Sohn K.; TIFOnet Critical Care Trials Group. Next-generation sequencing diagnostics of bacteremia in sepsis (Next GeneSiS-Trial): study protocol of a prospective, observational, noninterventional, multicenter, clinical trial. Medicine (Baltimore). 2018; 97 (6): e9868. DOI: 10.1097/MD.0000000000009868. PMID: 29419698

101. Besselink M.G., van Santvoort H.C., Buskens E., Boermeester M.A., van Goor H., Timmerman H.M., Nieuwenhuijs V.B., Bollen T.L., van Ramshorst B., Witteman B.J., Rosman C., Ploeg R.J., Brink M.A., Schaapherder A.F., Dejong C.H., Wahab P.J., van Laarhoven C.J., van der Harst E., van Eijck C.H., Cuesta M.A., Akkermans L.M., Gooszen H.G.; Dutch Acute Pancreatitis Study Group. Probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trial. Lancet. 2008; 371 (9613): 651-659. DOI: 10.1016/S0140-6736(08)60207-X. PMID: 18279948

102. Bongaerts G.P., Severijnen R.S. A reassessment of the PROPATRIA study and its implications for probiotic therapy. Nat. Biotechnol. 2016; 34 (1): 55–63. DOI: 10.1038/nbt.3436. PMID: 26744983

103. van Nood E., Speelman P., Nieuwdorp M., Keller J. Fecal microbiota transplantation: facts and controversies. Curr. Opin. Gastroenterol. 2014; 30 (1): 34-39. DOI: 10.1097/MOG.0000000000000024. PMID: 24241245

104. Han S., Shannahan S., Pellish R. Fecal microbiota transplant: treatment options for Clostridium difficile infection in the intensive care unit. J. Intensive Care Med. 2015; 31 (9): 577–586. DOI: 10.1177/0885066615594344. PMID: 26141116

105. Moayyedi P., Yuan Y., Baharith H., Ford A.C. Faecal microbiota transplantation for Clostridium difficile-associated diarrhoea: a systematic review of randomised controlled trials. Med. J. Aust. 2017; 207 (4): 166-172. DOI: 10.5694/mja17.00295. PMID: 28814204

106. McClave S.A., Patel J., Bhutiani N. Should fecal microbial transplantation be used in the ICU? Curr. Opin. Crit. Care. 2018; 24 (2): 105-111. DOI: 10.1097/MCC.0000000000000489. PMID: 29432297

107. Price R., MacLennan G., Glen J.; SuDDICU Collaboration. Selective digestive or oropharyngeal decontamination and topical oropharyngeal chlorhexidine for prevention of death in general intensive care: systematic review and network meta-analysis. BMJ. 2014; 348: g2197. DOI: 10.1136/bmj.g2197. PMID: 24687313

108. Buelow E., Bello González T.D.J., Fuentes S., de Steenhuijsen Piters W.A.A., Lahti L., Bayjanov J.R., Majoor E.A.M., Braat J.C., van Mourik M.S.M., Oostdijk E.A.N., Willems R.J.L., Bonten M.J.M., van Passel M.W.J., Smidt H., van Schaik W. Comparative gut microbiota and resistome profiling of intensive care patients receiving selective digestive tract decontamination and healthy subjects. Microbiome. 2017; 5 (1): 88. DOI: 10.1186/s40168-017-0309-z. PMID: 28803549

109. Dickson R.P. The microbiome and critical illness. Lancet Respir. Med. 2016; 4 (1): 59-72. DOI: 10.1016/S2213-2600(15)00427-0. PMID: 26700442


Review

For citations:


Chernevskaya E.A., Beloborodova N.V. Gut Microbiome in Critical Illness (Review). General Reanimatology. 2018;14(5):96-119. https://doi.org/10.15360/1813-9779-2018-5-96-119

Views: 2652


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)