Preview

General Reanimatology

Advanced search

Transplantation of Cardiac Mesenchymal Progenitor Cell Sheets for Myocardial Vascularization after an Infarction (Experimental Study)

https://doi.org/10.15360/1813-9779-2018-6-28-40

Abstract

Purpose. To develop a method of producing tissue-engineered constructs (TECs) on the basis of resident mesenchymal progenitor cells (MPC) of the human heart and to assess the effect of TECs transplantation on regenerative processes in the heart using a model of myocardial infarction in rats.
Materials and methods. Human resident MPCs were isolated from the right atrial auricle of CAD patients. A similar protocol was used to obtain MPCs from Wistar rats. The MPC immunophenotype was determined by cytofluorometry. Corresponding TECs were obtained on the basis of MPC sheets of human and rats' hearts. Myocardial infarction in rats was induced by ligation of the anterior descending coronary artery followed by TEC transplantation. Euthanasia was performed 30 days after the transplantation. Histological examination of the implant and vascularization cells, morphometric analysis, tracking of the MPC differentiation ability, determination of the content of growth factors by solid-phase ELISA were carried out. Statistical evaluation of the significance of differences was performed using the Statistica 8.0 software package.
Results. The analysis of the obtained cell constructs showed that they consisted of several layers of cells interacting with each other by means of connexin 43 and were characterized by good cell viability as a part TECs. The number of vessels in the peri-infarction area under the transplant from the MPC was significantly higher than that in the reference group with signs of differentiation of cardiac MPCs transplanted into endothelial vascular cells.
The increased vascularization was combined with an increase in the area of viable myocardial sites and a decrease in LV cavity dilation. Analysis of the cardiac MPC secretion products showed that they produce the most important growth factors and cytokines that regulate angiogenesis and migration of stem cells.
Conclusion. The strategy of using epicardial TEC transplantation based on MPC sheets seems to be a rational approach for effective delivery of viable stem/progenitor cells to the damaged myocardium. The use of TEC helps to reduce or temporarily eliminate the effect of factors that contribute to progressive heart dysfunction by local paracrine exposure and activation of the revascularization processes in the affected zone.

About the Authors

Konstantin V. Dergilev
Institute of Experimental Cardiology, National Medical Research Center of Cardiology, Ministry of Health of Russia
Russian Federation
15а 3rd Cherepkovskaya Str., 121552 Moscow


Zoya I. Tsokolaeva
Institute of Experimental Cardiology, National Medical Research Center of Cardiology, Ministry of Health of Russia; V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation

15а 3rd Cherepkovskaya Str., 121552 Moscow;

25 Petrovka Str., Bldg. 2, 107031 Moscow



Ivan A. Ryzhkov
V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation
25 Petrovka Str., Bldg. 2, 107031 Moscow


Elena V. Parfenova
Institute of Experimental Cardiology, National Medical Research Center of Cardiology, Ministry of Health of Russia; M. V. Lomonosov Moscow State University
Russian Federation

15а 3rd Cherepkovskaya Str., 121552 Moscow;

1 Universitetskaya Plaza, 119234 Moscow



References

1. Likhvantsev V.V., Ubasev Y.V., Skripkin Y.V., Zabelina T.S., Sungurov V.A., Lomivorotov V.V., Marchenko D.N. Preoperative prevention of heart failure in noncardiac surgery. Obshchaya Reanimatologiya = General Reanimatology. 2016; 12 (3): 48–61. DOI: 10.15360/1813-9779-2016-3-48-61. [In Russ., In Engl.]

2. Moroz V.V., Marchenko D.N., Skripkin Y.V., Zabelina T.S., Ovezov A.M., Likhvantsev V.V. Perioperative predictors of unfavorable outcome of vascular surgery. Obshchaya Reanimatologiya = General Reanimatology. 2017; 13 (3): 6–12. DOI: 10.15360/1813-9779-2017-3-6-12. [In Russ., In Engl.]

3. Dergilev K.V., Rubina K.A., Tsokolaeva Z.I., Sysoeva V.Yu., Gmyzina A.I., Kalinina N.I., Belyavskaya T.M., Akchurin R.S., Parfenova E.V., Tkachuk V.A. Left ventricular heart aneurism-a new source of resident cardiac stem cells. Tsitologiya. 2010; 52 (11): 921–930. PMID: 21268851. [In Russ.]

4. Dergilev K.V., Tsokolaeva Z.I., Rubina K.A., Sysoeva V.Y., Makarevich P.I., Boldyreva M.A., Beloglazova I.B., Zubkova E.S., Sharonov G.V., Akchurin R.S., Parfyonova Y.V. Isolation and characterization of cardiac progenitor cells obtaining from myocardial right atrial appendage tissue. Tsitologiya. 2016; 58 (5): 340–348. PMID: 30188625. [In Russ.]

5. Dergilev K.V., Makarevich P.I., Tsokolaeva Z.I., Boldyreva M.A., Beloglazova I.B., Zubkova E.S., Menshikov M.Yu., Parfyonova Y.V. Comparison of cardiac stem cell sheets detached by Versene solution and from thermoresponsive dishes reveals similar properties of constructs. Tissue Cell. 2017; 49 (1): 64–71. DOI: 10.1016/j.tice.2016.12.001. PMID: 28041835

6. Traktuev D.O., Tsokolaeva Z.I., Shevelev A.A., Talitskiy K.A., Stepanova V.V., Johnstone B.H., Rahmat-Zade T.M., Kapustin A.N., Tkachuk V.A., March K.L., Parfyonova Y.V. Urokinase gene transfer augments angiogenesis in ischemic skeletal and myocardial muscle. Mol. Ther. 2007; 15 (11): 1939–1946. DOI: 10.1038/sj.mt.6300262. PMID: 17653104

7. Zhang Y., Sivakumaran P., Newcomb A.E., Hernandez D., Harris N., Khanabdali R., Liu G.S., Kelly D.J., Pébay A., Hewitt A.W., Boyle A., Harvey R., Morrison W.A., Elliott D.A., Dusting G.J., Lim S.Y. Cardiac repair with a novel population of mesenchymal stem cells resident in the human heart. Stem Cells. 2015; 33 (10): 3100–3113. DOI: 10.1002/stem.2101. PMID: 26184084

8. Taghavi S., Sharp T.E.3rd, Duran J.M., Makarewich C.A., Berretta R.M., Starosta T., Kubo H., Barbe M., Houser S.R. Autologous c-Kit+ mesenchymal stem cell injections provide superior therapeutic benefit as compared to c-Kit+ cardiac-derived stem cells in a feline model of isoproterenolinduced cardiomyopathy. Clin. Transl. Sci. 2015; 8 (5): 425–431. DOI: 10.1111/cts.12251. PMID: 25684108

9. Di Meglio F., Castaldo C., Nurzynska D., Miraglia R., Romano V., Russolillo V., Giuseppina L., Vosa C., Montagnani S. Localization and origin of cardiac CD117-positive cells: identification of a population of epicardiallyderived cells in adult human heart. Ital. J. Anat. Embryol. 2010; 115 (1–2): 71–78. PMID: 21072993

10. Karantalis V., Hare J.M. Use of mesenchymal stem cells for therapy of cardiac disease. Circ. Res. 2015; 116 (8): 1413–1430. DOI: 10.1161/CIRCRESAHA.116.303614. PMID: 25858066

11. Terashvili M., Bosnjak Z.J. Stem cell therapies in cardiovascular disease. J. Cardiothorac. Vasc. Anesth. 2018; pii: S1053-0770(18)30281-7. [Epub ahead of print]. DOI: 10.1053/j.jvca.2018.04.048. PMID: 30029992

12. Dergilev K.V., Rubina K.A., Parfenova E.V. Resident cardiac stem cells. Kardiologiia. 2011; 51 (4): 84–92. PMID: 21623726. [In Russ.]

13. Konstandin M.H., Völkers M., Collins B., Quijada P., Quintana M., De La Torre A., Ormachea L., Din S., Gude N., Toko H., Sussman M.A. Fibronectin contributes to pathological cardiac hypertrophy but not physiological growth. Basic Res. Cardiol. 2013; 108 (5): 375. DOI: 10.1007/s00395013-0375-8. PMID: 23912225

14. Muncie J.M., Weaver V.M. The physical and biochemical properties of the extracellular matrix regulate cell fate. Curr. Top. Dev. Biol. 2018; 130: 1–37. DOI: 10.1016/bs.ctdb.2018.02.002. PMID: 29853174

15. Lai H.J., Kuan C.H., Wu H.C., Tsai J.C., Chen T.M., Hsieh D.J., Wang T.W. Tailored design of electrospun composite nanofibers with staged release of multiple angiogenic growth factors for chronic wound healing. Acta Biomater. 2014; 10 (10): 4156–4166. DOI: 10.1016/j.actbio.2014.05.001. PMID: 24814882

16. Stone O.A., Carter J.G., Lin P.C., Paleolog E., Machado M.J., Bates D.O. Differential regulation of blood flow-induced neovascularization and mural cell recruitment by vascular endothelial growth factor and angiopoietin signalling. J. Physiol. 2017; 595 (5): 1575–1591. DOI: 10.1113/JP273430. PMID: 27868196

17. Brudno Y., Ennett-Shepard A.B., Chen R.R., Aizenberg M., Mooney D.J. Enhancing microvascular formation and vessel maturation through temporal control over multiple pro-angiogenic and pro-maturation factors. Biomaterials. 2013; 34 (36): 9201–9209. DOI: 10.1016/j.biomaterials.2013.08.007. PMID: 23972477

18. Makarevich P.I., Dergilev K.V., Tsokolaeva Z.I., Boldyreva M.A., Shevchenko E.K., Gluhanyuk E.V., Gallinger J.O., Menshikov M.Y., Parfyonova Y.V. Angiogenic and pleiotropic effects of VEGF165 and HGF combined gene therapy in a rat model of myocardial infarction. PLoS One. 2018; 13 (5): e0197566. DOI: 10.1371/journal.pone.0197566. PMID: 29787588

19. Szade A., Grochot-Przeczek A., Florczyk U., Jozkowicz A., Dulak J. Cellular and molecular mechanisms of inflammation-induced angiogenesis. IUBMB Life. 2015; 67 (3): 145–159. DOI: 10.1002/iub.1358. PMID: 25899846

20. Karaman S., Leppänen V.M., Alitalo K. Vascular endothelial growth factor signaling in development and disease. Development. 2018; 145 (14): pii: dev151019. DOI: 10.1242/dev.151019. PMID: 30030240

21. Morishita R., Aoki M., Hashiya N., Yamasaki K., Kurinami H., Shimizu S., Makino H., Takesya Y., Azuma J., Ogihara T. Therapeutic angiogenesis using hepatocyte growth factor (HGF). Curr. Gene Ther. 2004; 4 (2): 199–206. DOI: 10.2174/1566523043346453. PMID: 15180586

22. Morishita R., Nakamura S., Hayashi S., Taniyama Y., Moriguchi A., Nagano T., Taiji M., Noguchi H., Takeshita S., Matsumoto K., Nakamura T., Higaki J., Ogihara T. Therapeutic angiogenesis induced by human recombinant hepatocyte growth factor in rabbit hind limb ischemia model as cytokine supplement therapy. Hypertension. 1999; 33 (6): 1379–1384. DOI: 10.1161/01.HYP.33.6.1379. PMID: 10373220

23. Yu J., Li M., Qu Z., Yan D., Li D., Ruan Q. SDF-1/CXCR4-mediated migration of transplanted bone marrow stromal cells toward areas of heart myocardial infarction through activation of PI3K/Akt. J. Cardiovasc. Pharmacol. 2010; 55 (5): 496–505. DOI: 10.1097/FJC.0b013e3181d7a384. PMID: 20179608

24. Linke A., Müller P., Nurzynska D., Casarsa C., Torella D., Nascimbene A., Castaldo C., Cascapera S., Böhm M., Quaini F., Urbanek K., Leri A., Hintze T.H., Kajstura J., Anversa P. Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc. Natl. Acad. Sci. USA. 2005; 102 (25): 8966–8971. DOI: 10.1073/pnas.0502678102. PMID: 15951423


Review

For citations:


Dergilev K.V., Tsokolaeva Z.I., Ryzhkov I.A., Parfenova E.V. Transplantation of Cardiac Mesenchymal Progenitor Cell Sheets for Myocardial Vascularization after an Infarction (Experimental Study). General Reanimatology. 2018;14(6):28-40. https://doi.org/10.15360/1813-9779-2018-6-28-40

Views: 1099


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)