Preview

General Reanimatology

Advanced search

The Contribution of Brain-Derived Neurotrophic Factor (BDNF) and its TrkB Receptor to Hippocampal Neuron Resistance to Ischemia-Reperfusion (Experimental Study)

https://doi.org/10.15360/1813-9779-2018-6-41-50

Abstract

The purpose of the study: to assess the content of BDNF and its TrkB receptor in the populations of hippocampal pyramidal neurons in the post-resuscitation period and to identify the contribution of these factors to the neuron resistance to ischemia.
Material and methods. The condition of populations of pyramidal neurons of the CA1 and CA4 hippocampus fields was investigated in white mature male rats that underwent a 10-minute cardiac arrest at different periods of the post-resuscitation period (1st, 4th, 7th, 14th day). Animals after a sham surgery served as a reference group. Immunocytochemical methods were used to determine immunoreactivity to BDNF and TrkB proteins. Based on the visual inspection and analysis of the optical density, the following types of neurons with different color intensity were distinguished: weak (BDNF–, TrkB–), moderate (BDNF+, TrkB+) and strong (BDNF++, TrkB++). The total density of neurons and the number of cells with different immunoreactivity to the studied proteins per 1 mm of length were determined. We used the Olympus BX-41 microscope and Image Scope M, ImageJ 1.48 v, MS Excel software. Statistical data processing was performed using Statistica 7.0 software.
Results. There was a decrease in the overall density of the population of pyramidal neurons in both studied fields of the hippocampus of the resuscitated animals as compared to the reference group: in the CA1field, on the 4th day after cardiac arrest (26%); in the CA4 field, on the 7th day (38.5%). It was found that the number of BDNF+ neurons doubled in the CA4 field on the 4th day, and the number of BDNF++ neurons decreased. On the 7th day, the number of BDNF– cells decreased sharply, the number of BDNF+ cells decreased to the reference level, and the number of BDNF++ neurons remained reduced vs. the reference group. There was a decrease in the number of BDNF– and BDNF+ cells in the CA1 field on the 4th day, while the number of BDNF++ neurons remained the same. The observed changes remained on Day 14.
The analysis TrkB protein expression in the CA4 field on the 7th day of the post-resuscitation period as revealed by reactivity with anti-TrkB antibody demonstrated a decrease in the number of TrkB– cells as compared to the reference group. By the 14th day, the number of not only TrkB– neurons, but also TrkB+ cells was reduced, while the number of TrkB++ neurons remained at the level of the reference group. There was a decrease in the number of TrkB+ neurons was observed in the CA1 field on the 4th day after resuscitation. On day 7, there was a decreased numbers of both TrkB+ and TrkB–-neurones. The number of TrkB–-neurones remained decreased up to day 14. At that, the number of TrkB++ neurons persisted at the reference level throughout the observation period.
Conclusion. The obtained results demonstrate that the resistance of neurons to ischemia-reperfusion is associated with the intracellular expression of BDNF and TrkB proteins. The reduction of the overall density of neurons in the post-resuscitation period was obsereved both in hippocampal fields CA1 and СА4; only cells with minimal and moderate content of the studied proteins died. Neurons with the highest BDNF and TrkB protein content survived.

About the Authors

Irina V. Ostrova
V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation
25 Petrovka Str., Bldg. 2, 107031 Moscow


Maria Sh. Avrushchenko
V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation
25 Petrovka Str., Bldg. 2, 107031 Moscow


Arkady M. Golubev
V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation
25 Petrovka Str., Bldg. 2, 107031 Moscow


Nataliya V. Golubeva
V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation
25 Petrovka Str., Bldg. 2, 107031 Moscow


References

1. Larpthaveesarp A., Ferriero D.M., Gonzalez F.F. Growth factors for the treatment of ischemic brain injury (growth factor treatment). Brain Sci. 2015; 5 (2): 165–177. DOI: 10.3390/brainsci5020165. PMID: 25942688

2. Zhao H., Alam A., San C.Y., Eguchi S., Chen Q., Lian Q., Ma D. Molecular mechanisms of brain-derived neurotrophic factor in neuro-protection: recent developments. Brain Res. 2017; 1665: 1–21. DOI: 10.1016/j.brainres.2017.03.029. PMID: 28396009

3. Chen A., Xiong L.J., Tong Y., Mao M. The neuroprotective roles of BDNF in hypoxic ischemic brain injury. Biomed. Rep. 2013; 1 (2): 167–176. DOI: 10.3892/br.2012.48. PMID: 24648914

4. Berretta A., Tzeng Y.C., Clarkson A.N. Post-stroke recovery: the role of activity-dependent release of brain-derived neurotrophic factor. Expert. Rev. Neurother. 2014; 14 (11): 1335–1344. DOI: 10.1586/14737175.2014.969242. PMID: 25319267

5. Dmitrieva V.G., Stavchansky V.V., Povarova O.V., Skvortsova V.I., Limborska S.A., Dergunova L.V. Effects of ischemia on the expression of neurotrophins and their receptors in rat brain structures outside the lesion site, including on the opposite hemisphere. Mol. Biol. (Mosk.). 2016; 50 (5): 775–784. DOI: 10.7868/S002689841603006X. PMID: 27830679. [In Russ.]

6. Kimura A., Namekata K., Guo X., Harada C., Harada T. Neuroprotection, growth factors and BDNF-TrkB signaling in retinal degeneration. Int. J. Mol. Sci. 2016; 17 (9): pii: E1584. PMID:27657046. DOI: 10.3390/ ijms17091584. PMID: 27657046

7. Wu C.H., Hung T.H., Chen C.C., Ke C.H., Lee C.Y., Wang P.Y., Chen S.F. Post-injury treatment with 7,8-dihydroxyflavone, a TrkB receptor agonist, protects against experimental traumatic brain injury via PI3K/Akt signaling. PLoS One. 2014; 9 (11): e113397. DOI: 10.1371/journal.pone. 0113397. PMID: 25415296

8. Vilar M., Mira H. Regulation of neurogenesis by neurotrophins during adulthood: expected and unexpected roles. Front Neurosci. 2016; 10: 26. DOI: 10.3389/fnins.2016.00026. PMID: 26903794

9. Mokhtari T., Akbari M., Malek F., Kashani I.R., Rastegar T., Noorbakhsh F., Ghazi-Khansari M., Attari F., Hassanzadeh G. Improvement of memory and learning by intracerebroventricular microinjection of T3 in rat model of ischemic brain stroke mediated by upregulation of BDNF and GDNF in CA1 hippocampal region. Daru. 2017; 25 (1): 4. DOI: 10.1186/s40199-017-0169-x. PMID: 28202057

10. Korpachev V.G., Lysenkov S.P., Tel L.Z. Modeling clinical death and postresuscitation disease in rats. Patologicheskaya Fiziologiya i Eksperimentalnaya Terapiya. 1982; 26 (3): 78–80. PMID: 7122145. [In Russ.]

11. Tecuatl C., Herrrera-López G., Martín-Ávila A., Yin B., Weber S., Barrionuevo G., Galván E.J. TrkB-mediated activation of the phosphatidylinositol-3-kinase/Akt cascade reduces the damage inflicted by oxygen-glucose deprivation in area CA3 of the rat hippocampus. Eur. J. Neurosci. 2018; 47 (9): 1096–1109. DOI: 10.1111/ejn.13880. PMID: 29480936

12. Lee T.H., Yang J.T., Ko Y.S., Kato H., Itoyama Y., Kogure K. Influence of ischemic preconditioning on levels of nerve growth factor, brain-derived neurotrophic factor and their high-affinity receptors in hippocampus following forebrain ischemia. Brain Res. 2008; 1187: 1–11. DOI: 10.1016/j.brainres.2007.09.078. PMID: 18036511

13. Shu X., Zhang Y., Xu H., Kang K., Cai D. Brain-derived neurotrophic factor inhibits glucose intolerance after cerebral ischemia. Neural. Regen. Res. 2013; 8 (25): 2370–2378. DOI: 10.3969/j.issn.1673-5374.2013.25.008. PMID: 25206547

14. Huang W., Meng F., Cao J., Liu X., Zhang J., Li M. Neuroprotective role of exogenous brain-derived neurotrophic factor in hypoxia-hypoglycemia-induced hippocampal neuron injury via regulating Trkb/MiR134 signaling. J. Mol. Neurosci. 2017; 62 (1): 35–42. DOI: 10.1007/s12031-017-0907-z. PMID: 28343294

15. de la Tremblaye P.B., Benoit S.M., Schock S., Plamondon H. CRHR1 exacerbates the glial inflammatory response and alters BDNF/TrkB/pCREB signaling in a rat model of global cerebral ischemia: implications for neuroprotection and cognitive recovery. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2017; 79 (Pt B): 234–248. DOI: 10.1016/j.pnpbp.2017.06.021. PMID: 28647536

16. Ferrer I., López E., Pozas E., Ballabriga J., Martí E. Multiple neurotrophic signals converge in surviving CA1 neurons of the gerbil hippocampus following transient forebrain ischemia. J. Comp. Neurol. 1998; 394 (4): 416-430. DOI: 10.1002/(SICI)1096-9861(19980518)394:4<416::AID-CNE2>3.0.CO;2-4. PMID: 9590552

17. Liu C., Chan C.B., Ye K. 7,8-dihydroxyflavone, a small molecular TrkB agonist, is useful for treating various BDNF-implicated human disorders. Transl. Neurodegener. 2016; 5: 2. DOI: 10.1186/s40035-015-0048-7. PMID: 26740873

18. Povarnina P., Gudasheva T.A., Seredenin S.B. Dimeric dipeptide mimetics of NGF and BDNF are promising agents for post-stroke therapy. JBiSE. 2018; 11 (5): 100–107. DOI: 10.4236/jbise.2018.115009

19. Sangiovanni E., Brivio P., Dell’Agli M., Calabrese F. Botanicals as modulators of neuroplasticity: focus on BDNF. Neural. Plast. 2017; 2017: 5965371. DOI: 10.1155/2017/5965371. PMID: 29464125

20. Fahimi A., Baktir M.A., Moghadam S., Mojabi F.S., Sumanth K., McNerney M.W., Ponnusamy R., Salehi A. Physical exercise induces structural alterations in the hippo1campal astrocytes: exploring the role of BDNF-TrkB signaling. Brain Struct. Funct. 2017; 222 (4): 1797–1808. DOI: 10.1007/s00429-016-1308-8. PMID: 27686571

21. Luo J., Zheng H., Zhang L., Zhang Q., Li L., Pei Zh., Hu X. High-frequency repetitive transcranial magnetic stimulation (rTMS) improves functional recovery by enhancing neurogenesis and activating BDNF/TrkB signaling in ischemic rats. Int. J. Mol. Sci. 2017; 18 (2): pii: E455. DOI: 10.3390/ijms18020455. PMID: 28230741


Review

For citations:


Ostrova I.V., Avrushchenko M.Sh., Golubev A.M., Golubeva N.V. The Contribution of Brain-Derived Neurotrophic Factor (BDNF) and its TrkB Receptor to Hippocampal Neuron Resistance to Ischemia-Reperfusion (Experimental Study). General Reanimatology. 2018;14(6):41-50. https://doi.org/10.15360/1813-9779-2018-6-41-50

Views: 1649


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)