Preview

General Reanimatology

Advanced search

Urokinase-Type Plasminogen Activator System in Norm and in Life-Threatening Processes (Review)

https://doi.org/10.15360/1813-9779-2018-6-61-79

Abstract

The multifunctional urokinase-type plasminogen activator system (uPA-system) includes serine proteinase — uPA or urokinase, its receptor (uPAR) and two inhibitors (PAI-1 and PAI-2). The review discusses the structural features and involvement of the system components in the development of life-threatening processes including carcinogenesis, inflammation, neurogenesis and fibrinolysis, in regulation of which the destruction of extracellular matrix (ECM), cell mobility and signaling inside and outside the cell play a decisive role. uPA triggers the processes by activating the plasminogen and its convertion into plasmin involved in the activation of matrix metalloproteinases (MMPs) in addition to the regulation of fibrinolysis. MMPs can hydrolyze all the major ECM components and therefore play a key role in invasion, metastasis, and cell mobility. MMPs activates a cassette of biologically active regulatory molecules and release them from ECM. uPAR, PAI-1 and PAI-2 are responsible for regulation of the uPA activity. In addition, being a signaling receptor, uPAR along with MMPs lead to the stimulation of a number of signaling pathways that are associated with the regulation of proliferation, apoptosis, adhesion, growth and migration of cells contributing to tumor progression, inflammation, chemotaxis, and angiogenesis. Effective participation of the uPA system components in ECM destruction and regulation of intracellular and extracellular signaling pathways demonstrates that the system significantly contributes to the regulation of various physiological and pathological processes.

About the Authors

Elena V. Kugaevskaya
V. N. Orekhovich Research Institute of Biomedical Chemistry
Russian Federation
10 Pogodinskaya Str., 19121 Moscow


Tatiana A. Gureeva
V. N. Orekhovich Research Institute of Biomedical Chemistry
Russian Federation
10 Pogodinskaya Str., 19121 Moscow


Olga S. Timoshenko
V. N. Orekhovich Research Institute of Biomedical Chemistry
Russian Federation
10 Pogodinskaya Str., 19121 Moscow


Nina I. Solovyeva
V. N. Orekhovich Research Institute of Biomedical Chemistry
Russian Federation
10 Pogodinskaya Str., 19121 Moscow


References

1. Jaiswal R.K., VarshneyA.K., Yadava P.K. Diversity and functional evolution of the plasminogen activator system. Biomed. Pharmacother. 2018; 98: 886–898. DOI: 10.1016/j.biopha.2018.01.029. PMID: 29571259

2. Mahmood N., Mihalcioiu C., Rabbani S.A. Multifaceted role of the urokinase-type plasminogen activator (uPA) and its receptor (uPAR): diagnostic, prognostic, and therapeutic applications. Front. Oncol. 2018; 8: 24. DOI: 10.3389/fonc.2018.00024. PMID: 29484286

3. Aisina R.B., Mukhametova L.I. Structure and functions of plasminogen/plasmin system. Bioorganicheskaya Khimiya. 2014; 40 (6): 642–657. DOI: 10.7868/S0132342314060025. PMID: 25895360. [In Russ.]

4. Mekkawy A.H., Pourgholami M.H., Morris D.L. Involvement of urokinase-type plasminogen activator system in cancer: an overview. Med. Res. Rev. 2014; 34 (5): 918–956. DOI: 10.1002/med.21308. PMID: 24549574

5. Tkachuk V.A., Plekhanova O.S., Beloglazova I.B., Parfenova E.V. The role of the multi-domain structure of urokinase in the regulation of vascular growth and remodeling. Ukrainsky Biokhimichesky Zhurnal. 2013; 85 (6): 18–45. . [In Russ.]

6. Law R.H., Abu-Ssaydeh D., Whisstock J.C. New insights into the structure and function of the plasminogen/plasmin system. Curr. Opin. Struct. Biol. 2013; 23 (6): 836–841. DOI: 10.1016/j.sbi.2013.10.006. PMID: 24252474

7. Cui N., Hu M., Khalil R.A. Biochemical and biological attributes of matrix metalloproteinases. Prog. Mol. Biol. Transl. Sci. 2017; 147: 1–73. DOI: 10.1016/bs.pmbts.2017.02.005. PMID: 28413025

8. Duffy M.J. The urokinase plasminogen activator system: role in malignancy. Curr. Pharm. Des. 2004; 10 (1): 39–49. DOI: 10.2174/1381612043453559. PMID: 14754404

9. Duffy M.J., Duggan C. The urokinase plasminogen activator system: a rich source of tumour markers for the individualised management of patients with cancer. Clin. Biochem. 2004; 37 (7): 541–548. DOI: 10.1016/j.clinbiochem.2004.05.013. PMID: 15234235

10. Mondino A., Blasi F. uPA and uPAR in fibrinolysis, immunity and pathology. Trends Immunol. 2004; 25 (8): 450–455. DOI: 10.1016/j.it.2004.06. 004. PMID: 15275645

11. Visse R., Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ. Res. 2003; 92 (8): 827–839. DOI: 10.1161/01.RES.0000070112.80711.3D. PMID: 12730128

12. Smith H.W., Marshall C.J. Regulation of cell signalling by uPAR. Nat. Rev. Mol. Cell Biol. 2010; 11 (1): 23–36. DOI: 10.1038/nrm2821. PMID: 20027185

13. D’Alessio S., Gerasi L, Blasi F. uPAR-deficient mouse keratinocytes fail to produce EGFR-dependent laminin-5, affecting migration in vivo and in vitro. J. Cell Sci. 2008; 121 (Pt 23): 3922-3932. DOI: 10.1242/jcs. 037549. PMID: 19001498

14. Madsen C.D., Sidenius N. The interaction between urokinase receptor and vitronectin in cell adhesion and signaling. Eur. J. Cell Biol. 2008; 87 (8-9): 617–629. DOI: 10.1016/j.ejcb.2008.02.003. PMID: 18353489

15. Mimuro J., Kaneko M., Murakami T., Matsuda M., Sakata Y. Reversible interactions between plasminogen activators and plasminogen activator inhibitor-1. Biochim. Biophys. Acta. 1992; 1160 (3): 325–334. DOI: 10.1016/0167-4838(92)90095-U. PMID: 1477106

16. Lijnen H.R. Pleiotropic functions of the plasminogen activator inhibitor-1. J. Thromb. Haemost. 2005; 3 (1): 35–45. DOI: 10.1111/j.1538-7836.2004.00827.x. PMID: 15634264

17. Kruithof E.K., Baker M.S., Bunn C.L. Biological and clinical aspects of plasminogen activator inhibitor type 2. Blood. 1995; 86 (11): 4007–4024. PMID: 7492756

18. Crippa M.P. Urokinase-type plasminogen activator. Int. J. Biochem. Cell Biol. 2007; 39 (4): 690–694. DOI: 10.1016/j.biocel.2006.10.008. PMID: 17118695

19. Schmitt M., Kanayama N., Jänicke F., Hafter R., Graeff H. Human tumor cell urokinase-type plasminogen activator (uPA): degradation of the pro-enzyme form (pro-uPA) by granulocyte elastase prevents subsequent activation by plasmin. Adv. Exp. Med. Biol. 1991; 297: 111–128. DOI: 10.1007/978-1-4899-3629-5_10. PMID: 1837419

20. Behrens M.A., Botkjaer K.A., Goswami S., Oliveira C.L.P., Jensen J.K., Schar C. R., Declerck P.J., Peterson C.B., Andreasen P.A., Pedersen J. S. Activation of the zymogen to urokinase-type plasminogen activator is associated with increased interdomain flexibility. J. Mol. Biol. 2011; 411 (2): 417–429. DOI: 10.1016/j.jmb.2011.05.026. PMID: 21669207

21. Appella E., Robinson E.A., Ullrich S.J., Stoppelli M.P., Corti A., Cassani G., Blasi F. The receptor-binding sequence of urokinase. A biological function for the growth-factor module of proteases. J. Biol. Chem. 1987; 262 (10): 4437–4440. PMID: 3031025

22. Kwak S.H., Mitra S., Bdeir K., Strassheim D., Park J.S., Kim J.Y., Idell S., Cines D., Abraham E. The kringle domain of urokinase-type plasminogen activator potentiates LPS-induced neutrophil activation through interaction with {alpha}V{beta}3 integrins. J. Leukoc. Biol. 2005; 78 (4): 937– 945. DOI: 10.1189/jlb.0305158. PMID: 16033814

23. Pluskota E., Soloviev D.A., Bdeir K., Cines D.B., Plow E.F. Integrin alphaMbeta2 orchestrates and accelerates plasminogen activation and fibrinolysis by neutrophils. J. Biol. Chem. 2004; 279 (17): 18063–18072. DOI: 10.1074/jbc.M310462200. PMID: 14769799

24. Mukhina S., Stepanova V., Traktouev D., Poliakov A., Beabealashvilly R., Gursky Ya., Minashkin M., Shevelev A., Tkachuk V. The chemotactic action of urokinase on smooth muscle cells is dependent on its kringle domain. Characterization of interactions and contribution to chemotaxis. J. Biol. Chem. 2000; 275 (22): 16450–16458. DOI: 10.1074/jbc.M909080199. PMID: 10749881

25. Poliakov A.A., Mukhina S.A., Traktouev D.O., Bibilashvily R.S., Gursky Y. G., Minashkin, M.M., Stepanova V.V., Tkachuk V.A. Chemotactic effect of urokinase plasminogen activator: a major role for mechanisms independent of its proteolytic or growth factor domains. J. Recept. Signal Transduct. Res. 1999; 19 (6): 939–951. DOI: 10.3109/10799899909038433. PMID: 10533982

26. Bdeir K., Kuo A., Sachais B.S., Rux A.H., Bdeir Y., Mazar A., Higazi A.A., Cines D.B. The kringle stabilizes urokinase binding to the urokinase receptor. Blood. 2003; 15 (10): 3600–3608. DOI: 10.1182/blood-2003-03-0949. PMID: 12881310

27. Petersen L.C., Lund L.R., Nielsen L.S., Danø K., Skriver L. One-chain urokinase-type plasminogen activator from human sarcoma cells is a proenzyme with little or no intrinsic activity. J. Biol. Chem. 1988; 263 (23): 11189–11195. PMID: 2969891

28. Spraggon G., Phillips C., Nowak U.K., Ponting C.P., Saunders D., Dobson C.M., Stuart D.I., Jones E.Y. The crystal structure of the catalytic domain of human urokinase-type plasminogen activator. Structure. 1995; 3 (7): 681–691. DOI: 10.1016/S0969-2126(01)00203-9. PMID: 8591045

29. Blasi F., Carmeliet P. uPAR: a versatile signalling orchestrator. Nat. Rev. Mol. Cell Biol. 2002; 3 (12): 932–943. DOI: 10.1038/nrm977. PMID: 12461559

30. D’Alessio S., Blasi F. The urokinase recertor as an entertainer of signal transduction. Front. Biosci. (Landmark Ed.). 2009; 14: 4575-4587. DOI: 10.2741/3550. PMID: 19273372

31. Ellis V., Scully M.F., Kakkar V.V. Plasminogen activation initiated by single-chain urokinase-type plasminogen activator. Potentiation by U937 monocytes. J. Biol. Chem. 1989; 264 (4): 2185–2188. PMID: 2521625

32. Carmeliet P., Moons L., Lijnen R., Baes M., Lemaitre V., Tipping P., Drew A., Eeckhout Y., Shapiro S., Lupu F., Collen D. Urokinase-generated plasmin activates matrix metalloproteinase during aneurysm formation. Nat. Gen. 1997; 17 (4): 439–444. DOI: 10.1038/ng1297-439. PMID: 9398846

33. Lijnen H.R. Plasmin and matrix metalloproteinases in vascular remodeling. Thromb. Haemost. 2001; 86 (1): 324–333. DOI: 10.1055/s-0037-1616230. PMID: 11487021

34. Choong P.F., Nadesapillai A.P. Urokinase plasminogen activator system: a multifunctional role in tumor progression and metastasis. Clin. Orthop. Relat. Res. 2003; 415 Suppl: S46–S58. DOI: 10.1097/01.blo.0000093845. 72468.bd. PMID: 14600592

35. Solovуeva N.I., Timoshenko O.S., Gureeva T.A., Kugaevskaya E.V. Matrix metalloproteinases and their endogenous regulators in squamous cervical carcinoma (review of the own data). Biomeditsinskaya Khimiya. 2015; 61 (6): 694–704. DOI: 10.18097/PBMC20156106694. PMID: 26716740. [In Russ.]

36. Timoshenko O.S., Kugaevskaya E.V., Gureeva T.A., Zavalishina L.E., Andreeva Y.Y., Solovуeva N.I. Matrix metalloproteinases 2 and 9, their endogenous regulators, and angiotensin-converting enzyme in cervical squamous cell carcinoma. Arkhiv Patologii. 2015; 77 (5): 31-35. DOI: 10.17116/patol201577531-35. PMID: 26978018. [In Russ.]

37. Timoshenko O.S., Gureeva T.A., Kugaevskaya E.V., Zavalishina L.E., Solovyeva N.I. Interstitial collagenase and their endogenous regulators in squamous cell cervical carcinoma. Biomeditsinskaya Khimiya. 2017; 63 (6): 513-519. DOI: 10.18097/PBMC20176306513. PMID: 29251612. [In Russ.]

38. Duffy M.J., McGowan P.M., Gallagher W.M. Cancer invasion and metastasis: changing views. J. Pathol. 2008; 214 (3): 283–293. DOI: 10.1002/path.2282. PMID: 18095256

39. Ulisse S., Baldini E., Sorrenti S., D’Armiento M. The urokinase plasminogen activator system: a target for anti-cancer therapy. Curr. Cancer Drug Targets. 2009; 9 (1): 32–71. DOI: 10.2174/156800909787314002. PMID: 19200050

40. Vassilli J.D., Baccino D., Belin D. A cellular binding site for the Mr 55,000 form of the human plasminogen activator, urokinase. J. Cell Biol. 1985; 100 (1): 86–92. DOI: 10.1083/jcb.100.1.86. PMID: 3880760

41. Cubellis M.V., Nolli M.L., Cassani G., Blasi F. Binding of single-chain prourokinase to the urokinase receptor of human U937 cells. J. Biol. Chem. 1986; 261 (34): 15819–15822. PMID: 3023326

42. Stephens R.W., Pöllänen J., Tapiovaara H., Leung K.C., Sim P.S., Salonen E.M., Rønne E., Behrendt N., Danø K., Vaheri A. Activation of pro-urokinase and plasminogen on human sarcoma cells: a proteolytic system with surface-bound reactants. J. Cell Biol. 1989; 108 (5): 1987–1995. DOI: 10.1083/jcb.108.5.1987. PMID: 2523891

43. Félez J. Plasminogen binding to cell surfaces. Fibrinol. Proteol. 1998; 12 (4): 183–189. DOI: 10.1016/S0268-9499(98)80012-X

44. Hu Z., Xu R., Liu J., Zhang Y., Du J., Li W., Zhang W., Li Y., Zhu Y., Gu L. GEP100 regulates epidermal growth factor-induced MDA-MB-231 breast cancer cell invasion through the activation of Arf6/ERK/uPAR signaling pathway. Exp. Cell Res. 2013; 319 (13): 1932–1941. DOI: 10.1016/j.yexcr.2013.05.028. PMID: 23747719

45. Yan Q., Bach D.Q., Gatla N., Sun P., Liu J.W., Lu J.Y., Paller A.S., Wang X.Q. Deacetylated GM3 promotes uPAR-associated membrane molecular complex to activate p38 MAPK in metastatic melanoma. Mol. Cancer Res. 2013; 11 (6): 665–675. DOI: 10.1158/1541-7786.MCR-12-0270-T. PMID: 23525268

46. Keasey M.P., Jia C., Pimentel L.F., Sante R.R., Lovins C., Hagg T. Blood vitronectin is a major activator of LIF and IL-6 in the brain through integrin-FAK and uPAR signaling. J. Cell Sci. 2018; 131 (3): pii:jcs202580. DOI: 10.1242/jcs.202580. PMID: 29222114

47. Plesner T., Behrendt N., Ploug M. Structure, function and expression on blood and bone marrow cells of the urokinase-type plasminogen activator receptor, uPAR. Stem Cells. 1997; 15 (6): 398–408. DOI: 10.1002/stem.150398. PMID: 9402652

48. Gårdsvoll H., Danø K., Ploug M. Mapping part of the functional epitope for ligand binding on the receptor for urokinase-type plasminogen activator by site-directed mutagenesis. J. Biol. Chem. 1999; 274 (53): 37995– 8003. DOI: 10.1074/jbc.274.53.37995. PMID: 10608868

49. Xu X., Gårdsvoll H., Yuan C., Lin L., Ploug M., Huang M. Crystal structure of the urokinase receptor in a ligand-free form. J. Mol. Biol. 2012; 416 (5): 629–641. DOI: 10.1016/j.jmb.2011.12.058. PMID: 22285761

50. Kjaergaard M., Hansen L.V., Jacobsen B., Gardsvoll H., Ploug M. Structure and ligand iinteractions of the urokinase(uPAR). Front. Biosci. 2008; 13: 5441-5461. DOI: 10.2741/3092. PMID: 18508598

51. Annis M.G., Ouellet V., Rennhack J.P., L’Esperance S., Rancourt C., Mes-Masson A.M., Andrechek E.R., Siegel P.M. Integrin-uPAR signaling leads to FRA-1 phosphorylation and enhanced breast cancer invasion. Breast Cancer Res. 2018; 20 (1): 9. DOI: 10.1186/s13058-018-0936-8. PMID: 29382358

52. Degryse B., Restani M., Czekay R.P., Loskutoff D.J., Blasi F. Domain 2 of the urokinase receptor contains an integrin-interacting epitope with intrinsic signaling activity: generation of a new integrin inhibitor. J. Biol. Chem. 2005; 280 (26): 24792–24803. DOI: 10.1074/jbc.M413954200. PMID: 15863511

53. Elen G., Archinti M., Arnaudova R., Andreotti G., Motta A., Furlan F., Citro V., Cubellis M.V., Degryse B. D2A sequence of the urokinase receptor induces cell growth through v 3 integrin and EGFR. Cell Mol. Life Sci. 2018; 75 (10): 1889–1907. DOI: 10.1007/s00018-017-2718-3. PMID: 29184982

54. Hu J., Muller K.A., Furnari F.B., Cavenee W.K., VandenBerg S.R., Gonias S.L. Neutralizing the EGF receptor in glioblastoma cells stimulates cell migration by activating uPAR-initiated cell signaling. Oncogene. 2015; 34 (31): 4078–4088. DOI: 10.1038/onc.2014.336. PMID: 25347738

55. Tarighi P., Montazeri H., Khorramizadeh M.R., Sobhani A.M., Ostad S.N., Ghahremani M.H. uPAR peptide antagonist alters regulation of MAP kinases and Bcl-2 family members in favoof apoptosis in MDA-MB-231 cell line. Res. Pharm. Sci. 2015; 10 (3): 200–205. PMID: 26600846

56. Liu X., Qiu F., Liu Z., Lan Y., Wang K., Zhou P.K., Wang Y., Hua Z.C. Urokinase-type plasminogen activator receptor regulates apoptotic sensitivity of colon cancer HCT116 cell line to TRAIL via JNK-p53 pathway. Apoptosis. 2014; 19 (10): 1532–1544. DOI: 10.1007/s10495-014-1025-9. PMID: 25113506

57. Larusch G.A., Merkulova A., Mahdi F., Shariat-Madar Z., Sitrin R.G., Cines D.B., Schmaier A.H. Domain 2 of uPAR regulates single-chain urokinase-mediated angiogenesis through 1-integrin and VEGFR2. Am. J. Physiol. Heart Circ. Physiol. 2013; 305 (3): H305-H320. DOI: 10.1152/ajpheart.00110.2013. PMID: 23709605

58. Hekenne S., Paques C., Nivelles O., Lion M., Bajou K., Pollenus T., Fontaine M., Carmeliet P., Martia J.A., Nguyen N.Q., Struman I. The interaction of uPAR with VEGFR2 promotes VEGF-induced angiog angiogenesis. Sci. Signal. 2015; 8 (403): ra117. DOI: 10.1126/scisignal.aaa2403. PMID: 26577922

59. Montuori N., Pesapane A., Rossi F.W., Giudice V., De Paulis A., Selleri C., Ragno P. Urokinase type plasminogen activator receptor (uPAR) as a new therapeutic target in cancer. Transl. Med. UniSa. 2016; 15: 15–21. PMID: 27896223

60. Montuori N., Visconte V., Rossi G., Ragno P. Soluble and cleaved forms of the urokinasereceptor: degradation products or active molecules? Thromb. Haemost. 2005; 93 (2): 192–198. DOI: 10.1160/TH04-09-0580. PMID: 15711732

61. Høyer-Hansen G., Ploug M., Behrendt N., Rønne E., Danø K. Cell surface acceleration of urokinase-catalyzed receptor cleavage. Eur. J. Biochem. 1997; 243 (1-2): 21–26. DOI: 10.1111/j.1432-1033.1997.0021a.x. PMID: 9030717

62. Mazar A.P. Urokinase plasminogen activator receptor choreographs multiple ligand interactions: implications for tumor progression and therapy. Clin. Cancer Res. 2008; 14 (18): 5649–5655. DOI: 10.1158/1078-0432.CCR-07-4863. PMID: 18794071

63. Stillfried G.E., Saunders D.N., Ranson M. Plasminogen binding and activation at the breast cancer cell surface: the integral role of urokinase activity. Breast Cancer Res. 2007; 9 (1): R14. DOI: 10.1186/bcr1647. PMID: 17257442

64. Ploug M. Structure-function relationships in the interaction between the urokinase-type plasminogen activator and its receptor. Curr. Pharm. Des. 2003; 9 (19): 1499–1528. DOI: 10.2174/1381612033454630. PMID: 12871065

65. Bao Y.N., Cao X., Luo D.H., Sun R., Peng L.X., Wang L., Yan Y.P., Zheng L.S., Xie P., Cao Y., Liang Y.Y., Zheng F.J., Huang B.J., Xiang Y.Q., Lv X., Chen Q.Y., Chen M.Y., Huang P.Y., Guo L., Mai H.Q., Guo X., Zeng Y.X., Qian C.N. Urokinase-type plasminogen activator receptor signaling is critical in nasopharyngeal carcinoma cell growth and metastasis. Cell Cycle. 2014; 13 (12): 1958–1969. DOI: 10.4161/cc.28921. PMID: 24763226

66. Fleetwood A.J., Achuthan A., Schultz H., Nansen A., Almholt K., Usher P., Hamilton J.A. Urokinase plasminogen activator is a central regulator of macrophage three-dimensional invasion, matrix degradation, and adhesion. J. Immunol. 2014; 192 (8): 3540–3547. DOI: 10.4049/jimmunol. 1302864. PMID: 24616477

67. Crriero M.V., Stopelli M.P. The urokinase-type plasminogen activator and the generation of inhibitors activity and signaling. Curr. Pharm. Des. 2011; 17 (19): 1944-1961. DOI: 10.2174/138161211796718143. PMID: 21711236

68. Ellis V., Wun T.C., Behrendt N., Rønne E., Danø K. Inhibition of receptor-bound urokinase by plasminogen-activator inhibitors. J. Biol. Chem. 1990; 265 (17): 9904–9908. PMID: 2161846

69. Stefansson S., McMahon G.A., Petitclerc E., Lawrence D.A. Plasminogen activator inhibitor-1 in tumor growth, angiogenesis and vascular remodeling. Curr. Pharm. Des. 2003; 9 (19): 1545–1564. DOI: 10.2174/ 1381612033454621. PMID: 12871067

70. Dellas C., Loskutoff D. J. Historical analysis of PAI-1 from its discovery to its potential role in cell motility and disease. Thromb. Haemost. 2005; 93 (4): 631–640. DOI: 10.1160/TH05-01-0033. PMID: 15841306

71. Placencio V.R., DeClerck Y.A. Plasminogen activator inhibitor-1 in cancer: rationale and insight for future therapeutic testing. Cancer Res. 2015; 75 (15): 2969–2974. DOI: 10.1158/0008-5472.CAN-15-0876. PMID: 26180080

72. Nagamine Y., Medcaf R.L., Muñoz-Cánoves P. Transcriptional and posttranscriptional regulation of the plasminogen activator system. Thromb. Haemost. 2005; 93 (4): 661–675. DOI: 10.1160/TH04-12-0814. PMID: 15841310

73. Croucher D.R., Saunders D.N., Lobov S., Ranson M. Revisiting the biological roles of PAI2 (SERPINB2) in cancer. Nat. Rev. Cancer. 2008; 8 (7): 535–545. DOI: 10.1038/nrc2400. PMID: 18548086

74. Harris N.L.E., Vennin C., Conway J.R.W., Vine K.L., Pinese M., Cowley M.J., Shearer R.F., Lucas M.C., Herrmann D., Allam A.H., Pajic M., Morton J.P.; Australian Pancreatic Cancer Genome Initiative, Biankin A.V., Ranson M., Timpson P., Saunders D.N. SerpinB2 regulates stromal remodelling and local invasion in pancreatic cancer. Oncogene. 2017; 36 (30): 4288–4298. DOI: 10.1038/onc.2017.63. PMID: 28346421

75. Kumar S., Baglioni C. Protection from tumor necrosis factor mediated cytolysis by overexpression of plasminogen activator inhibitor type-2. J. Biol. Chem. 1991; 266 (31): 20960–20964. PMID: 1939146

76. Dickinson J.L., Bates E.J., Ferrante A., Antalis T.M. Plasminogen activator inhibitor type 2 inhibits tumor necrosis factor alpha-induced apoptosis. Evidence for an alternate biological function. J. Biol. Chem. 1995; 270 (46): 27894–27904. DOI: 10.1074/jbc.270.46.27894. PMID: 7499264

77. McMahon B.J., Kwaan H.C. Components of the plasminogen-plasmin as biologic markers for cancer. Adv. Exp. Med. Biol. 2015; 867: 145-156. DOI: 10.1007/978-94-017-7215-0_10. PMID: 26530365

78. Su S.C., Lin C.W., Yang W.E., Fan W.I., Yang S.F. The urokinase-type hlasminogen activator (uPA) system as a biomarker and therapeutic target in human malignancies. Expert. Opin. Ther. Targets. 2016; 20 (5): 551-566. DOI: 10.1517/14728222.2016.1113260. PMID: 26667094

79. Amar S., Smith I., Fields G.B. Matrix metalloproteinase collagenolysis in health and disease. Biochem. Biophys. Acta. 2017; 1864 (11 Pt A): 1940-1951. DOI: 10.1016/j.bbamcr.2017.04.015. PMID: 28456643

80. Vorotnikov A.V. Chemotaxis: movement, direction, control. Uspekhi Biologicheskoi Khimii. 2011; 51: 335-400. [In Russ.]

81. Del Rosso M., Fibbi G., Pucci M., Margheri F., Serrati S. The plasminogen activationn system in inflammation. Front. Biosci. 2008; 13: 4667-4686. DOI: 10.2741/3032. PMID: 18508538

82. Del Rosso M., Margheri F., Serrati S., Chillà A., Laurenzana A., Fibbi G. The urokinase receptor system, a key regulator at the intersection between inflammation, immunity, and coagulation. Curr. Pharm. Des. 2011; 17 (19): 1924-1943. DOI: 10.2174/138161211796718189. PMID: 21711238

83. Reichel C.A., Kanse S.M., Krombach F. At the interface of fibrinolysis and inflammation: the role of urokinase-type plasminogen activator in the leukocyte extravasation casrade. Trends Cardiovasc. Med. 2012; 22 (7): 192-196. DOI: /10.1016/j.tcm.2012.07.019. PMID: 23062972

84. Schuliga M., Westall G., Xia Y., Stewart A.G. The plasminogen activation system: new targets in lung inflammation and remodeling. Curr. Opin. Pharmacol. 2013; 13 (3): 386-393. DOI: 10.1016/j.coph.2013.05.014. PMID: 23735578

85. Zhalyadov A.S., Balandina A.N., Kuprash A.D., Shrivaktava A., Shibeko A.M. The overview of fibrinolysis system contemporary concepts and of its disorders diagnostic methods. Voprosy Gematologii/Onkologii i Immunopatologii v Pediatrii. 2017; 16 (1): 69-82. [In Russ.]

86. Binder B.R. Physiology and pathophysiology of the fibrinolytic system. Fibrinolysis. 1995; 9 (Suppl. 1): 3–8. DOI: 10.1016/S0268-9499(05)80002-5

87. Lijnen H.R., Collen D. Mechanisms of physiological fibrinolysis. Baillieres Clin. Haematol. 1995; 8 (2): 277–290. DOI: 10.1016/S0950-3536(05)80268-9. PMID: 7549063

88. Lino N., Fiore L., Rapacioli M., Teruel L., Flores V., Scicolone G., Sánchez V. uPA-uPAR molecular complex is involved in cell signaling during neuronal migration and neuritogenesis. Dev. Dyn. 2014; 243 (5): 676–689. DOI: 10.1002/dvdy.24114. PMID: 24481918

89. Semina E., Rubina K., Sysoeva V., Rysenkova K., Klimovich P., Plekhanova O., Tkachuk V. Urokinase and urokinase receptor participate in regulation of neuronal migration, axon growth and branching. Eur. J. Cell. Biol. 2016; 95 (9): 295–310. DOI: 10.1016/j.ejcb.2016.05.003. PMID: 27324124

90. Merino P., Diaz A., Jeanneret V., Wu F., Torre E., Cheng L., Yepes M. Urokinase-type plasminogen activator (uPA) binding to the uPA receptor (uPAR) promotes axonal regeneration in the central nervous system. J. Biol. Chem. 2017; 292 (7): 2741–2753. DOI: 10.1074/jbc.M116.761650. PMID: 27986809

91. Diaz A., Merino P., Manrique L.G., Ospina J.P., Cheng L., Wu F., Jeanneret V., Yepes M. A cross talk between neuronal urokinase-type plasminogen activator (uPA) and astrocytic uPA receptor (uPAR) promotes astrocytic activation and synaptic recovery in the ischemic brain. J. Neurosci. 2017; 37 (43): 10310–10322. DOI: 10.1523/JNEUROSCI.1630-17.2017. PMID: 28931568


Review

For citations:


Kugaevskaya E.V., Gureeva T.A., Timoshenko O.S., Solovyeva N.I. Urokinase-Type Plasminogen Activator System in Norm and in Life-Threatening Processes (Review). General Reanimatology. 2018;14(6):61-79. https://doi.org/10.15360/1813-9779-2018-6-61-79

Views: 1875


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)