Combination of DNA Molecular Biomarkers in the Prediction of Critical Illness Outcome
https://doi.org/10.15360/1813-9779-2019-3-31-47
Abstract
Materials and methods. The study included patients from five ICU of 4 four hospitals (n=156). The patients were divided into 2 groups: (1) with sepsis (based on SEPSIS-3, 2016, criteria), (n=81) and with acute cerebrovascular event (n=75). CfDNA was isolated from patient’s blood plasma using organic solvents and its concentration was established by a spectrophotometer using fluorescent intercalating agent SYBR Green binding DNA with high affinity. Genotyping of rs352162 allele variants of TLR9 gene was carried out with the help of polymerase chain reaction using tetraprimers followed by separation of products via electrophoresis and their visualization. The cfDNA concentrations were compared in patients differ in TLR9 rs352162 genotypes and outcome was predicted in 30 days after hospitalization using the ROC analysis.
Results. As regards the cfDNA content, there was no significant difference between patients with sepsis (subgroups with abdominal or non-abdominal sepsis) from two different hospitals, and cfDNA concentration in groups of patients was not associated with the source of primary infection, which allowed increasing group size by pooling up the data. Pooled data have shown that the sensitivity and specificity of the lethal outcome prediction based on the cfDNA content depends on the genotype: in homozygotic patients withg TLR9 rs352162 CC genotype, the AUC was significantly higher than in the alternative group of patients with TLR9 rs352162 CT and TT genotypes.
Conclusion. The data we obtained suggest high informative value of establishing the genetic polymorphism of TLR9 as complimentary to determining the cfDNA concentration and may demonstrate potential usefulness of selecting patients according to their TLR9 genotype for investigations of the clinical effect of targeted drugs inhibiting interaction of cfDNA with receptor TLR9.
About the Authors
V. M. PisarevRussian Federation
25 Petrovka Str., Bldg. 2, 107031 Moscow
A. G. Chumachenko
Russian Federation
25 Petrovka Str., Bldg. 2, 107031 Moscow
A. D. Filev
Russian Federation
25 Petrovka Str., Bldg. 2, 107031 Moscow; 1 Moscowrech’e Str., 115478 Moscow
E. S. Ershova
Russian Federation
25 Petrovka Str., Bldg. 2, 107031 Moscow; 1 Moscowrech’e Str., 115478 Moscow
S. V. Kostyuk
Russian Federation
25 Petrovka Str., Bldg. 2, 107031 Moscow; 1 Moscowrech’e Str., 115478 Moscow
N. N. Veiko
Russian Federation
1 Moscowrech’e Str., 115478 Moscow
E. K. Grigoriev
Russian Federation
25 Petrovka Str., Bldg. 2, 107031 Moscow
E. V. Elysina
Russian Federation
4 Shkulev Str., 109263 Moscow
R. A. Cherpakov
Russian Federation
26 Bakinskya Str., 115516 Moscow
A. V. Tutelyan
Russian Federation
1 Samora Mashela Str., GSP-7, 117997 Moscow; 3a Novogireevskaya Str., 111123 Moscow
References
1. Jabaley C.S, Blum J.M., Groff R.F., O’Reilly-Shah VN. Global trends in the awareness of sepsis:insights from search engine data between 2012 and 2017. Crit Care. 2018; 22: 7. PMID: 29343292. DOI: 10.1186/s13054-017-1914-8.
2. Sandquist M, Wong H.R. Biomarkers of sepsis and their potential value in diagnosis, prognosis and treatment. Expert Rev Clin Immunol. 2014 Oct; 10(10): 1349-56. PMID:25142036. PMCID: PMC4654927. DOI: 10.1586/1744666X.2014.949675.
3. Nakada T.A., Takahashi W., Nakada E., Shimada T., Russell J.A., Walley K.R. Genetic Polymorphisms in Sepsis and Cardiovascular Disease: Do Similar Risk Genes Suggest Similar Drug Targets? Chest. 2019 Jan 17. pii: S0012-3692(19)30013-3. PMID: 30660782. DOI: 10.1016/j.chest.2019.01.003.
4. Dwivedi DJ, ToltlL.J., Swystun L.L., PogueJ., LiawK.L., Weitz J.I., Cook DJ, Fox-Robichaud AE, Liaw PC. Prognostic utility and characterization of cell-free DNA in patients with severe sepsis. Crit Care. 2012; 16(4): R151. PMID: 22889177. PMCID: PMC3580740. DOI: 10.1186/cc11466.
5. Vajpeyee A., Wijatmiko T., Vajpeyee M., Taywade O. Cell free DNA: A Novel Predictor of Neurological Outcome after Intravenous Thrombolysis and/or Mechanical Thrombectomy in Acute Ischemic Stroke Patients. Neurointervention 2018 Mar;13(1): 13-19. PMID: 29535894. DOI: 10.5469/neuroint.2018.13.1.13.
6. Sanchis J., Garcia-Blas S., Ortega-Paz L., Dantas A.P., Rodriguez E., Abellan L., Brugaletta S., Valero E., Minana G., Garabito M., Corchon A., Nunez J., Carratala A., Sabate M. Cell-free DNA and Microvascular Damage in ST-segment Elevation Myocardial Infarction Treated With Primary Percutaneous Coronary Intervention. Rev Esp Cardiol (Engl Ed). 2018 Apr 11. PMID: 29655768. DOI: 10.1016/j.rec.2018.03.005.
7. Khubutia M.S., Shabanov A.K., Skulachev M.V., Bulava G.V., Savchenko I.M., Grebenchikov O.A., SergeevAA., ZorovD.B., Zinovkin R.A. Mitochondrial and Nuclear DNA in Patients with Severe Polytrauma. Obshchya reanimatologiya = General Reanimatology. 2013;9(6): 24 [In Russ]. DOI: 10.15360/1813-9779-2013-6-24.
8. Likhvantsev V.V, Landoni G., Grebenchikov O.A., Skripkin Y.V., Zabelina T.S., Zinovkina L.A., Prikhodko A.S, Lomivorotov V.V., Zinovkin R.A. Nuclear DNA as Predictor of Acute Kidney Injury in Patients Undergoing Coronary Artery Bypass Graft: A Pilot Study. J Cardiothorac Vasc Anesth. 2017 Dec; 31(6): 2080-2085. PMID: 28967626. DOI: 10.1053/j.jvca.2017.04.051.
9. Gilbert S. F., Barresi M.J.B. Chapter 15 Neural Crest Cells and Axonal Specificity. Developmental biology. Sunderland, MA, USA: Oxford University Press; 2016: 509-510.
10. Tamkovich S.N., Cherepanova A.V., Kolesnikova E.V., Rykova E.Y., Pyshnyi D.V., Vlassov V.V., LaktionovP.P. Circulating DNA and DNase activity in human blood. Ann N Y Acad Sci. 2006 Sep;1075:191-6. PMID: 17108211. DOI: 10.1196/anna!s.1368.026
11. Verhoven B., Schlegel RA., Williamson P. Mechanisms of phosphati-dylserine exposure, a phagocyte recognition signal, on apoptotic T lymphocytes. Journal of Experimental Medicine. Nov 1995, 182 (5) 1597-1601; PMID: 7595231. DOI:10.1084/jem.182.5.1597
12. van der Vaar M, Pretorius PJ. Circulating DnA. Its origin and fluctuation. Ann N Y Acad Sci. 2008, 1137, P 18-26. PMID:18837919. DOI:10.1196/annals.1448.022
13. Hummel E.M., Hessas E., Muller S., Beiter T., Fisch M., Eibl A., Wolf O. T., Giebel B., Pla.ten P, Kumsta R., Moser D.A. Cell-free DNA release under psychosocial and physical stress conditions. Transl Psychiatry. 2018 Oct 29;8(1): 236. PMID: 30374018. DOI: 10.1038/s41398-018-0264-x.
14. Ferna.ndo M.R., Jia,ng C, Krzyzanowski G.D., Ryan W.L. New evidence that a large proportion of human blood plasma cell-free DNA is localized in exosomes. PLoS One. 2017; 12(8): PMID: 28850588. DOI: 10.1371/journal.pone.0183915.
15. Du X., Poltorak A., Wei Y., Beutler B. Three novel mammalian toll-like receptors: gene structure, expression, and evolution. Eur Cytokine Netw. 2000 Sep;11(3): 362-71. PMID:11022119.
16. Sabatel C., Radermecker C., Fievez L., Paulissen G., Chakarov S., Fernandes C., Olivier S., ToussaintM., Pirottin D., Xiao X., Quatresooz P, Sirard J.C., Ca.taldo D., Gillet L., Bouabe H, Desmet C.J., Ginhoux F., Marichal T, Bureau F. Exposure to Bacterial CpG DNA Protects from Airway Allergic Inflammation by Expanding Regulatory Lung Interstitial Macrophages. Immunity. 2017 Mar 21;46(3): 457-473. PMID: 28329706. DOI:10.1016/j.immuni.2017.02.016.
17. Plitas G., BurtBM., Nguyen H.M., BamboatZ.M., DeMatteo R.PToll-like receptor 9 inhibition reduces mortality in polymicrobial sepsis. J Exp Med. 2008 Jun 9;205(6): 1277-83. PMID:18474631. DOI: 10.1084/jem.20080162.
18. WeighardtH., Ka.iser-Moore S., Vabulas R.M., Kirschning C.J., Wagner H., Holzmann B. Cutting edge: myeloid differentiation factor 88 deficiency improves resistance against sepsis caused by polymicrobial infection. JImmunol. 2002 Sep 15;169(6): 2823-7. PMID: 12218091. DOI: 10.4049/jimmunol.169.6.2823
19. Chen K.H., Zeng L, Gu W., Zhou J., Du D. Y., Jiang J.X Polymorphisms in the toll-like receptor 9 gene associated with sepsis and multiple organ dysfunction after major blunt trauma. PMID: 21633947. Br J Surg. 2011 Sep;98(9): 1252-9. DOI: 10.1002/bjs.7532.
20. Singer M., Deutschma.n C.S., Seymour C.W., Shankar-Hari M., Annane D. , Bauer M., Bellomo R., Bernard G.R., Chiche J.D., Coopersmith C.M, HotchkissR.S., LevyM.M., MarshallJ.C., Martin G.S., OpalS.M., Ruben-feld G.D., van der Poll', Vincent J.L., Angus D.C. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315(8): 801-810. PMID: 26903338. DOI:10.1001/jama.2016.0287.
21. Napolitano L.M. Sepsis 2018: Definitions and Guideline Changes. Surg Infect (Larchmt). 2018 Feb/Mar;19(2): 117-125. PMID: 29447109 DOI: 10.1089/sur.2017.278.
22. AvrielA., Wiessman M. P, AlmogY., Perl Y., Novack V, Galante O., Klein M. , Pencina M. J., Douvdeva.ni A. Admission Cell Free DNA Levels Predict 28-Day Mortality in Patients with Severe Sepsis in Intensive Care. PLoS One. 2014; 9(6): e100514. PMID: 24955978. DOI:10.1371/jo-urnal.pone.0100514
23. BronkhorstM.W., BoyeN.D., LomaxM.A., Vossen R.H., Bakker J., Patka P, Van LieshoutEM. Single-nucleotide polymorphisms in the Toll-like receptor pathway increase susceptibility to infections in severely injured trauma patients. J Trauma Acute Care Surg. 2013 Mar;74(3): 86270. PMID: 23425749. DOI: 10.1097/TA.0b013e31827e1534.
24. Smelaya T.V., Belopolskaya O.B., Smirnova S.V, KuzovlevA.N., Moroz V.V, GolubevA.M., Pabalan N.A., SalnikovaL.E. Genetic dissection of host immune response in pneumonia development and progression. Sci Rep. 2016 Oct 11;6:35021. PMID: 27725770. DOI: 10.1038/srep35021.
25. Chumachenko A.G., Myazin A.E., Kuzovlev A.N., Gaponov A.M., Tutelyan A.V., Porokhovnik L.N., Golubev A.M., Pisarev V.M. Allelic Variants of NRF2 and TLR9 Genes in Critical Illness. Obshchaya reanimatologiya=General Reanimatology. 2016;12(4): 8-23. DOI: 10.15360/1813-9779-2016-4-8-23. [In Russ, In Engl].
26. Ayala A., Herdon C.D., Lehman D.L., Ayala C.A., Chaudry I.H. Differential induction of apoptosis in lymphoid tissues during sepsis: variation in onset, frequency, and the nature of the mediators. Blood. 1996 May 15;87(10): 4261-75. PMID: 8639785.
27. Galluzzi L., Vitale I., Aaronson S.A., Abrams J.M., Adam D., Agostinis P., Alnemri E.S., Altucci L., Amelio I., Andrews D.W., Annicchiarico-Petruzzelli M., Antonov A.V., Arama E., Baehrecke E.H.,Barlev N.A., Bazan N.G. Bernassola F., Bertrand M.J.M.,.Bianchi K., Blagosklonny M.V., Blomgren K., Borner C.,Boya P., Brenner C., Campanella M.,Candi E., Carmona-Gutierrez D., Cecconi F., Chan F.K., Chandel N.S.,.Cheng E.H., Chipuk J.E., Cidlowski J.A., Ciechanover A., Cohen G.M., Conrad M., Cubillos-Ruiz JR.,.Czabotar P.E., D’Angiolella V., Dawson T.M.,. Dawson V.L., De Laurenzi V., De Maria R., Debatin K.M., DeBerardinis R.J., Deshmukh M., Di Daniele N., Di Virgilio F., Dixit V.M., Dixon S.J.,. Duckett C.S., Dynlacht B.D., El-Deiry W.S., Elrod J.W., Fimia G.M., Fulda S ,García-Sáez A.J. Garg AD, Garrido C, Gavathiotis E, Golstein P, Gottlieb E, Green DR, Greene LA, Gronemeyer H, Gross A, Hajnoczky G, Hardwick JM, Harris IS, Hengartner MO, Hetz C, Ichijo H, Jäättelä M, Joseph B, Jost PJ, Juin PP, Kaiser WJ. Karin M, Kaufmann T, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Knight RA, Kumar S, Lee SW, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Lowe SW, Luedde T, Lugli E, MacFarlane M, Madeo F, Malewicz M, Malorni W, Manic G, Marine JC, Martin SJ, Martinou JC, Medema J.P., Mehlen P, Meier P., Melino S., Miao EA, Molkentin JD, Moll UM, Muñoz-Pinedo C,. Nagata S., Nuñez G., Oberst A., Oren , Overholtzer M, Pagano M., Panaretakis T., Pasparakis M., Penninger JM, Pereira DM, Pervaiz S., Peter M.E., Piacentini M., Pinton P., Prehn J.H.M., Puthalakath H., Rabinovich G.A., Rehm M., Rizzuto R, Rodrigues C.M.P., Rubinsztein D.C., Rudel T., Ryan K.M., Sayan E. Scorrano L, Shao F, Shi Y, Silke J, Simon HU, Sistigu A, Stockwell B.R., Strasser A., Szabadkai G., Tait S.W.G., Tang D., Tavernarakis N, Thorburn A, Tsujimoto Y., Turk B. Vanden Berghe T., Vandenabeele P., Vander Heiden M.G., Villunger A. Virgin H.W., Vousden K.H., Vucic D, Wagner E.F., Walczak H., Wallach D, Wang Y., Wells .JA., Wood W., Yuan J, Zakeri Z., Zhivotovsky B., Zitvogel L, Melino G, Kroemer G. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018 Mar; 25(3): 486–541.PMID: 29362479, doi: 10.1038/s41418-017-0012-4
28. Krychtiuk K.A., Ruhittel S., Hohensinner PJ., Koller L., Kaun C., Lenz M. , Bauer B., Wutzlhofer L., Draxler D.F., Maurer G., Huber K., Wojta J. , Heinz G., Niessner A., Speidl W.S. Mitochondrial DNA and Toll-Like Receptor-9 Are Associated With Mortality in Critically Ill Patients. Crit Care Med. 2015 Dec;43(12): 2633-41. PMID: 26448617 doi:10.1097/CCM.0000000000001311.
29. Surpris G., Poltorak A. The expanding regulatory network of STING-mediated signaling. Curr Opin Microbiol. 2016 Aug;32:144-150. PMID: 27414485; PubMed Central DOI: 10.1016/j.mib.2016.05.014.
30. Hamaguchi S., Akeda Y., Yamamoto N., Seki M., Yamamoto K., Oishi K. , Tomono K Origin of Circulating Free DNA in Sepsis: Analysis of the CLP Mouse Model. Mediators Inflamm., 015: 614518. PmID: 26273139. DOI: 10.1155/2015/614518.
31. SeeleyJ.J. Ghosh S. Molecular mechanisms of innate memory and tolerance to LPS. J Leukoc Biol. 2017 Jan; 101(1): 107-119. PMID: 27780875 DOI: 10.1189/jlb.3MR0316-118RR.
32. Johansson PI., Stensballe J., Ostrowski S.R. Shock induced endothe-liopathy (SHINE) in acute critical illness - a unifying pathophysiologic mechanism. Crit Care. 2017 Feb 9;21(1): 25. pMiD: 28179016. DOI: 10.1186/s13054-017-1605-5.
33. Xing C., Arai K, Lo E.H., Hommel M. Pathophysiologic cascades in ischemic stroke. Int J Stroke. 2012 Jul; 7(5): 378-385, PMID: 22712739. DOI: 10.1111/j.1747-4949.2012.00839.x
34. Khatri R., McKinney AM, Swenson B., Janardhan V. Blood-brain barrier, reperfusion injury, and haemorrhagic transformation in acute ischemic stroke. Neurology. 2012 Sep 25;79(13 Suppl 1): S52-7. PMID: 23008413 DOI: 10.1212/WNL.0b013e3182697e70.
35. Powers W.J., Rabinstein A.A., Ackerson T., Adeoye O.M., Bambakidis N. C., Becker K., Biller J., Brown M., Demaerschalk B.M., Hoh B., Jauch E.C., Kidwell C.S., Leslie-Mazwi T.M, Ovbiagele B., Scott P.A., Sheth K.N., Southerla.ndA.M., SummersD.V, TirschwellD.LAmerican Heart Association Stroke Council. 2018 Guidelines for the Early Management of Patients With Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2018 Mar;49(3): e46-e110. PMID:29367334. DOI: 10.1161/STR.0000000000000158.
36. Krychtiuk K.A., Ruhittel S., Hohensinner PJ., Koller L., Kaun C., Lenz M., Bauer B., Wutzlhofer L., Draxler D.F., Maurer G., Huber K., Wojta J., Heinz G., Niessner A., Speidl W.S. Mitochondrial DNA and Toll-Like Receptor-9 Are Associated With Mortality in Critically Ill Patients. Crit Care Med. 2015 Dec; 43(12): 2633-41. PMID: 26448617 DOI: 10.1097/CCM.0000000000001311.
37. Zhong Z., Liang S., Sanchez-Lopez E., He F., Shalapour S., Lin X.J., Wong J., Ding S., Seki E., Schnabl B., Hevener A.L, Greenberg H.B, Kis-seleva T, Karin M. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature. 2018 Aug;560(7717): 198-203. PMID: 30046112, DOI: 10.1038/s41586-018-0372-z
Review
For citations:
Pisarev V.M., Chumachenko A.G., Filev A.D., Ershova E.S., Kostyuk S.V., Veiko N.N., Grigoriev E.K., Elysina E.V., Cherpakov R.A., Tutelyan A.V. Combination of DNA Molecular Biomarkers in the Prediction of Critical Illness Outcome. General Reanimatology. 2019;15(3):31-47. (In Russ.) https://doi.org/10.15360/1813-9779-2019-3-31-47