Neuroprotective Effect of Lithium Chloride in Rat Model of Cardiac Arrest
https://doi.org/10.15360/1813-9779-2019-3-73-82
Abstract
Lithium chloride, which is used for the treatment of bipolar disorders, has a neuroprotective effect in conditions associated with acute and chronic circulatory disorders.
The purpose of the study: to investigate the efficacy of lithium chloride for the prevention of post-resuscitation death of hippocampal neurons during the post-resuscitation period.
Material and methods. Cardiac arrest for 10 minutes was evoked in mature male rats by intrathoracic clumping of the vascular bundle of the heart, followed by resuscitation. 40 mg/kg or 20 mg/kg of 4,2% lithium chloride (LiCl) was injected intraperitoneally 1 hour before cardiac arrest, on the 1st and 2nd day after resuscitation (n=9). Untreated animals received equivalent doses of saline (n=9). Rats after a sham surgery served as a reference group (n=10). The number of viable neurons in the CA1 and CA3/CA4 fields of the hippocampus was estimated in slides stained with cresyl violet by day 6 or 7 postresuscitation. In a separate series of experiments, at the same terms, we studied the effect of lithium chloride on the protein content of GSK3β (glycogen synthase kinase) in brain tissue using Western-Blot analysis.
Results. Histological assay showed that a 10-minute cardiac arrest resulted in a decrease in the number of viable neurons in the hippocampal CA1 field — by 37.5% (P0.001), in the CA3/CA4 field — by 12.9% (P0.05) vs. the reference group. Lithium treatment increased the number of viable neurons in resuscitated rats — in the CA1 field by 37% (P<0.01), in the CA3/CA4 field — by 11.5% (P0.1) vs. the untreated animals. It was found that lithium caused an increase in phosphorylated form of GSK3β: by 180% vs. the reference group (P[1]0.05), and by 150% vs. the untreated animals (P0.05).
Conclusion. Lithium treatment leads to a pronounced neuroprotection in the neuronal populations of the hippocampus post-resuscitation. This effect may be due to an increase in the content of the phosphorylated form of GSK3β protein. The results indicate a high potential of lithium for the prevention and treatment of neurodegenerative disorders caused by a temporary arrest of blood circulation.
About the Authors
I. V. OstrovaRussian Federation
25 Petrovka Str., Bldg. 2, 107031 Moscow
O. A. Grebenchikov
Russian Federation
25 Petrovka Str., Bldg. 2, 107031 Moscow
N. V. Golubeva
Russian Federation
25 Petrovka Str., Bldg. 2, 107031 Moscow
References
1. Baldessarini R.J., Tondo L., Davis P., Pompili M.,Goodwin F.K., Hennen J. Decreased risk of suicides and attempts during long-term lithium treatment: a meta-analytic review. Bipolar Disord. 2006; 8: 625–629. DOI:10.1111/j.1399-5618.2006.00344.x PMID:17042835
2. Plotnikov E.Y., Silachev D.N., Zorova L.D., Pevzner I.B., Jankauskas S.S., Zorov S.D., Babenko V.A., Skulachev M.V., Zorov D.B. Lithium salts – simple but magic (review). Biochemistry (Moscow). 2014; 79 (8): 932943. DOI: 10.1134/S0006297914080021 [In Russ]
3. Lan C.-C., Liu C.-C., Lin C.-H., Lan T.-Y., McInnis M.G., Chan C.-H., Lan T.-H. A reduced risk of stroke with lithium exposure in bipolar disorder: a population-based retrospective cohort study. Bipolar. Disord. 2015; 17: 705–714. DOI: 10.1111/bdi.12336
4. Bosche B., Molcanyi M., Rej S., Doeppner T.R., Obermann M., Müller D.J., Das A., Hescheler J., Macdonald R.L., Noll T., Härtel F.V. Low-dose lithium stabilizes human endothelial barrier by decreasing mlc phosphorylation and universally augments cholinergic vasorelaxation capacity in a direct manner. Front Physiol. 2016; 7: 593. DOI: 10.3389/fphys.2016.00593.
5. Chuang D.M., Chen R.W., Chalecka-Franaszek E., Ren M., Hashimoto R., Senatorov V., Kanai H., Hough C., Hiroi T., Leeds P. Neuroprotective effects of lithium in cultured cells and animal models of diseases. Bipolar Disord. 2002; 4: 129–136. PMID:12071510
6. Cimarosti H., Rodnight R., Tavares A., Paiva R., Valentim L., Rocha E., Salbego C. An investigation of the neuroprotective effect of lithium in organotypic slice cultures of rat hippocampus exposed to oxygen and glucose deprivation. Neurosci Lett. 2001; 315 (1-2): 33–36. PMID:11711208
7. Xu J., Culman J., Blume A., Brecht S., Gohlke P. Chronic treatment with a low dose of lithium protects the brain against ischemic injury by reducing apoptotic death. Stroke. 2003; 34 (5): 1287-1292. PMID:12677021 DOI:10.1161/01.STR.0000066308.25088.64
8. Xu X.H., Zhang H.L., Han R., Gu Z.L., Qin Z.H. Enhancement of neuroprotection and heat shock protein induction by combined prostaglandin A1 and lithium in rodent models of focal ischemia. Brain Res. 2006; 1102 (1): 154-162. DOI:10.1016/j.brainres.2006.04.111 PMID:16797496.
9. Ren M., Senatorov V.V., Chen R.W., Chuang D.M. Postinsult treatment with lithium reduces brain damage and facilitates neurological recovery in a rat ischemia/reperfusion model. Proc. Natl. Acad. Sci. USA. 2003; 100 (10): 6210-6215. DOI:10.1073/pnas.0937423100. PMID:12732732 PMCID: PMC156351
10. Yan X.B., Wang S.S., Hou H.L., Ji R., Zhou J.N. Lithium improves the behavioral disorder in rats subjected to transient global cerebral ischemia. Behav Brain Res. 2007; 27; 177 (2): 282-9. DOI:10.1016/ j.bbr.2006.11.021 PMID:17210190
11. Liu Z., Li R., Jiang C., Zhao S., Li W., Tang X. The neuroprotective effect of lithium chloride on cognitive impairment through glycogen synthase kinase-3β inhibition in intracerebral hemorrhage rats. Eur. J. Pharmacol. 2018; 840: 50-59. DOI: 10.1016/j.ejphar.2018.10.019.
12. Kerr F., Bjedov I., Sofola-Adesakin O. Molecular mechanisms of lithium action: switching the light on multiple targets for dementia using animal models. Frontiers in Molecular Neuroscience. 2018; 11: № 297.DOI: 10.3389/fnmol.2018.00297
13. Mohammadianinejad S.E., Majdinasab N., Sajedi S.A., Abdollahi F., Moqaddam M., Sadr F. The effect of lithium in post-stroke motor recovery: A double-blind, placebo-controlled, randomized clinical trial. Clin. Neuropharmacol. 2014; 37: 73–78. DOI: 0.1097/WNF.0000000000000028. PMID:24824661
14. Sun Y.R., Herrmann N., Scott C.J.M., Black S.E., Swartz R.H., Hopyan J., Lanctôt K.L. Lithium carbonate in a poststroke population: exploratory analyses of neuroanatomical and cognitive outcomes. Journal of Clinical Psychopharmacology. 2019; 39 (1): 67-71. DOI: 10.1097/JCP.0000000000000981
15. Hajek T., Weiner M.W. Neuroprotective effects of lithium in human brain? Food for thought. Current Alzheimer Research. 2016; 13 (8): 862-872. DOI: 10.2174/1567205013666160219112712
16. Gerhard T., Devanand D.P., Huang C., Crystal S., Olfson, M. Lithium treatment and risk for dementia in adults with bipolar disorder: Population-based cohort study. British Journal of Psychiatry. 2015; 207 (1): 46-51. DOI: 10.1192/bjp.bp.114.154047
17. Matsunaga S., Kishi T., Annas P., Basun H., Hampel H., Iwata N. Lithium as a treatment for alzheimer’s disease: a systematic review and meta-analysis. Journal of Alzheimer’s Disease. 2015; 48 (2): 403-410. DOI: 10.3233/JAD-150437
18. Vo T.M., Perry P., Ellerby M., Bohnert K. Is lithium a neuroprotective agent? Annals of Clinical Psychiatry. 2015; 27 (1): 49-54. PMID:25696782
19. Nunes M.A., Viel T.A., Buck H.S. Microdose lithium treatment stabilized cognitive impairment in patients with Alzheimer’s disease. Curr. Alzheimer Res. 2013; 10: 104-107. DOI:10.1371/journal.pone.0142267 PMID:26605788 PMCID:PMC4659557
20. Rajkowska G., Clarke G., Mahajan G., Licht C.M., van de Werd H.J.J.M., Yuan P., Stockmeier C.A., Manji H.K., Uylings H.B.M. Differential effect of lithium on cell number in the hippocampus and prefrontal cortex in adult mice: A stereological study. Bipolar Disorders. 2016; 18 (1): 41-51. DOI: 10.1111/bdi.12364
21. Ferensztajn-Rochowiak E., Rybakowski J.K. The effect of lithium on hematopoietic, mesenchymal and neural stem cells. Pharmacological Reports. 2016; 68 (2): 224-230. DOI: 10.1016/j.pharep.2015.09.005
22. Chuang D.M. Neuroprotective and neurotrophic actions of the mood stabilizer lithium: can it be used to treat neurodegenerative diseases? Crit. Rev. Neurobiol. 2004; 16 (1-2): 83-90. PMID:15581403
23. Vasilieva A.K., Plotnikov Е.YU., Kazachenko A.V., Kirpatovskij V.I., Zorov D.B. Inhibition of GSK-3b reduces ischemic-induced kidney cell death. Biull. Exper. Biol. Med. 2010; 149 (3): 276–281 [In Russ].
24. Moroz V.V., Silachev D.N., Plotnikov E.Y., Zorova L.D., Pevzner I.B., Grebenchikov O.A., Likhvantsev V.V. Mechanisms of cell damage and protection in ischemia/reperfusion and experimental rationale for the use of lithium-based preparations in anesthesiology. Obshchaya reanimatologiya=General Reanimatology. 2013; 9 (1): 63-72. DOI: 10.15360/1813-9779-2013-1-63 [In Russ]
25. Athanasuleas C.L., Buckberg G.D., Allen B.S., Beyersdorf F., Kirsh M.M. Sudden cardiac death: directing the scope of resustitation towards the heart and brain Resustitation. 2006; 70: 44–51. DOI:10.1016/j.resuscitation.2005.11.017 PMID:16759784
26. Nolan J.P., Soar J., Cariou A., Cronberg T., Moulaert V.R.M., Deakin Ch.D., Bottiger B.W., Friberg H., Sunde K., Sandroni C. European Resuscitation Council and European Society of Intensive Care Medicine Guidelines for Post-resuscitation Care 2015 Section 5 of the European Resuscitation Council Guidelines for Resuscitation 2015. Resuscitation. 2015; 95: 202-222. DOI:10.1016/j.resuscitation.2015.07.018
27. Sanganalmath S.K., Gopal P., Parker J.R., Downs R.K., Parker J.C. Jr., Dawn B. Global cerebral ischemia due to circulatory arrest: insights into cellular pathophysiology and diagnostic modalities. Mol. Cell Biochem. 2017; 426 (1-2): 111-127. DOI: 10.1007/s11010-016-2885-9. PMID:27896594
28. Negovski V.A., Gurvich А.М., Zolotokrylina Е.S. Postresuscitation disease. М., Medicine. 1987; 480p. [In Russ.]
29. Ostrova I.V., Avrushchenko M.S., Golubev A.M., Golubeva N.V. The Contribution of brain-derived neurotrophic factor (BDNF) and its TrkB receptor to hippocampal neuron resistance to ischemia-reperfusion (experimental study). Obshchaya reanimatologiya=General Reanimatology. 2018; 14 (6): 41-50. DOI: 10.15360/1813-9779-20186-41-50 [In Russ., In Engl.]
30. Avrushchenko M.S., Ostrova I.V. Postresuscitative Changes of BrainDerived Neurotrophic Factor (BDNF) Protein Expression: Association With Neuronal Death. Obshchaya reanimatologiya=General Reanimatology. 2017; 13 (4): 6-21. DOI: 10.15360/1813-9779-2017-4-6-21 [In Russ., In Engl.]
31. Korpachev V.G., Lysenkov S.P., Tel L.Z. Modelirovanie klinicheskoi smerti i postreanimatsionnoi bolezni u krys. [Modeling clinical death and postresuscitation disease in rats]. Patologicheskaya Fiziologiya I Eksperimentalnaya Terapiya. 1982; 3: 78—80. PMID: 7122145. [In Russ.]
32. Kawai K., Nitecka L., Ruetzler C.A., Nagashima G., Joó F., Mies G., Nowak T.S. Jr., Saito N., Lohr J.M., Klatzo I. Global cerebral ischemia associated with cardiac arrest in the rat: I. Dynamics of early neuronal changes. J. Cereb. Blood Flow Metab. 1992; 12 (2): 238-249. DOI: 10.1038/jcbfm.1992.34 PMID: 1548296
33. Iwasaki H., Ohmachi Y., Kume E.,Krieglstein J. Strain differences in vulnerability of hippocampal neurons to transient cerebral ischaemia in the rat. Int. J. Exp. Path. 1995; 76: 171-178. PMID:7547427 PMCID:PMC1997166
34. Wang Z.F., Fessler E.B., Chuang D.M. Beneficial effects of mood stabilizers lithium, valproate and lamotrigine in experimental stroke models. Acta Pharmacol. Sin. 2011; 32 (12): 1433-1445. DOI: 10.1038/aps.2011.140.
35. Doeppner T.R., Kaltwasser B., Sanchez-Mendoza E.H., Caglayan A.B., Bahr M., Hermann D.M. Lithium-induced neuroprotection in stroke involves increased miR-124 expression, reduced RE1-silencing transcription factor abundance and decreased protein deubiquitination by GSK3b inhibition-independent pathways. Journal of Cerebral Blood Flow & Metabolism. 2017; 37 (3): 914–926. DOI: 10.1177/0271678X16647738
36. Taliyan R., Ramagiri S. Delayed neuroprotection against cerebral ischemia reperfusion injury: putative role of BDNF and GSK-3β. J. Recept. Signal Transduct. Res.2016; 36 (4): 402-410. DOI: 10.3109/10799893.2015.1108338.
37. Pronin A.V., Gromova O.A., Torshin I.Yu., Stelmashuk E.V., Aleksandrova O.P., Genrikhs E.E., Khaspekov L.G. Neuroprotective properties of lithium salts during glutamate-induced stress. Nevrologiya, neiropsikhiatriya, psikhosomatika. 2017; 9 (3): 111–119. DOI: 10.14412/2074-2711-2017-3-111-119 [In Russ.]
38. Rom S., Fan Sh., Reichenbach N., Dykstra H., Ramirez S.H., Persidsky Y. Glycogen synthase kinase 3 inhibition prevents monocyte migration across brain endothelial cells via Rac1-GTPase suppression and down-regulation of active integrin conformation. Am. J. Pathol. 2012; 181: 1414–1425. DOI: 10.1016/j.ajpath.2012.06.018
39. Malhi G.S., Tanious M., Das P., Coulston C.M., Berk M. Potential mechanisms of action of lithium in bipolar disorder. Current understanding. CNS Drugs. 2013; 27: 135–153. DOI: 10.1007/s40263-013-00390 PMID: 23371914
40. Chiu C.T., Chuang, D.M. Molecular actions and therapeutic potential of lithium in preclinical and clinical studies of CNS disorders. Pharmacol. Ther. 2010; 128: 281–304. DOI: 10.1016/j.pharmthera. 2010.07.006 PMID: 20705090 PMCID: PMC3167234
41. Fan M., Jin W., Zhao H., Xiao Y., Jia Y., Yin Y., Jiang X., Xu J., Meng N., Lv P. Lithium chloride administration prevents spatial learning and memory impairment in repeated cerebral ischemia-reperfusion mice by depressing apoptosis and increasing BDNF expression in hippocampus. Behav Brain Res. 2015; 291: 399-406. DOI: 10.1016/j.bbr.2015.05.047. PMID:26031381
42. Rybakowski, J.K., Suwalska, A., Hajek, T. Clinical perspectives of lithium’s neuroprotective effect. Pharmacopsychiatry. 2017; 51 (5): 194199. DOI: 10.1055/s-0043-124436
Review
For citations:
Ostrova I.V., Grebenchikov O.A., Golubeva N.V. Neuroprotective Effect of Lithium Chloride in Rat Model of Cardiac Arrest. General Reanimatology. 2019;15(3):73-82. (In Russ.) https://doi.org/10.15360/1813-9779-2019-3-73-82