Preview

General Reanimatology

Advanced search

Neuroprotection Mechanisms in Cerebral Hypothermia (Review)

https://doi.org/10.15360/1813-9779-2019-6-94-114

Abstract

The review focuses on the neuroprotective mechanisms of therapeutic hypothermia from the standpoint of metabolic depression and genomic reprogramming of neurons that develop when brain temperature decreases.

The concept of hypothermic pre-conditioning based on the development of typical nonspecific reactions for the formation of the cytoprotective phenotype of neurons due to potentially dangerous stimuli, such as ischemia, reperfusion, and hypothermia, was used to explain the effects of low temperatures. The data confirming the role of therapeutic cerebral hypothermia as a technique of selective brain exposure to mild cold for the neuroprotection and correction of temperature balance disorders are shown.

The approach to therapeutic hypothermia as a hypothermic pre-conditioning allows to significantly expand the scope of its use in various procedural variants.

About the Authors

Oleg A. Shevelev
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology; Peoples’ Friendship University of Russia
Russian Federation

777 Lytkino 141534, Solnechnogorsk district, Moscow region;
6 Miklukho-Maсlaya Str., 117198 Moscow



Marina V. Petrova
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology; Peoples’ Friendship University of Russia
Russian Federation
777 Lytkino 141534, Solnechnogorsk district, Moscow region;
6 Miklukho-Maсlaya Str., 117198 Moscow


Shavkat Kh. Saidov
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation
777 Lytkino 141534, Solnechnogorsk district, Moscow region


Nadezhda A. Khodorovich
Peoples’ Friendship University of Russia
Russian Federation
6 Miklukho-Maсlaya Str., 117198 Moscow


Pranil Pradkhan
2 Peoples’ Friendship University of Russia
Nepal
6 Miklukho-Maсlaya Str., 117198 Moscow


References

1. Labori A., Gyugenar P. Hybernotherapy in medical practice. М.: Medgiz; 1956: 281 [In Russ.].

2. Negovskij V.A. Revitalization of the body and artificial hypothermia, М.: Medgiz; 1960: 302 [In Russ.].

3. Lampe J.W., Becker L.B. State of the art in therapeutic hypothermia. Annu Rev Med. 2011; 11: 104–110. DOI: 10.1146/annurev-med052009-150512

4. Bernard S.A., Buist M. Induced hypothermia in critical care medicine: a review. Crit Care Med. 2003; 31: 2041–2051. DOI: 10.1097/01.CCM.0000069731.18472.61

5. Den Hertog H.M., van der Worp H.B., Tseng M.C., Dippel D.V. Cooling therapy for acute stroke. Cochrane Database Syst Rev. 2009; 130: 3063–3074. DOI: 10.1002/14651858.CD001247.pub2

6. Cooper D.J., Nichol A.D., Bailey M., Bernard S. Effect of Early Sustained Prophylactic Hypothermia on Neurologic Outcomes Among Patients With Severe Traumatic Brain Injury: The POLAR Randomized Clinical Trial. JAMA. 2018; 320(21): 2211–2220. DOI: 10.1001/jama. 2018.17075.

7. Cheboksary D. V., Shevelev O. A., Burov A.V., Bunina M. A. Radiothermometry of the brain in craniocerebral hypothermia in the acute period of ischemic stroke. Novosti anesteziologii i reanimatologii. 2015; 1: 3–8 [In Russ.]

8. Shevelev O. A., Burov A.V., Kalenova I. E., Sharinova I. E. Craniocerebral hypothermia in the therapy of ischemic stroke. Bol, obezbolivanie, intensivnaya terapiya. 2012; 1: 605–608 [In Russ.]

9. Butrov A.V., Shevelev O.A., Cheboksarov D.V., Buntina M.A. The use of craniocerebral hypothermia in patients with acute impairment of cerebral circulation under the control of radiothermometry. Vestnik intensivnoj terapii. 2014; 5: 47 [In Russ.]

10. Torosyan B. D., Butrov A. V., Shevelev O. A., Cheboksarov D. V., Pokatilova N. S. Effect of craniocerebral hypothermia on oxygen consumption, metabolism and central hemodynamics in patients with acute ischemic stroke. Medicinskij alfavit. 2017; 17 (314): 29–32. [In Russ.]

11. Rzechorzek N.M., Connick P., Patani R., Selvaraj B.T., Chandrana S. Hypothermic Preconditioning of Human Cortical Neurons Requires Proteostatic Priming. EBioMedicine. 2015; 2(6): 528–535. DOI: 10.1016/j.ebiom.2015.04.004

12. Rzechorzek N.M. Hypothermic preconditioning in human cortical neurons: coupling neuroprotection to ontogenic reversal of tau. Edinburgh Research Archive. 2015. http://hdl.handle.net/1842/15894

13. Murry C.E., Jennings R.B., Reimer K.A. Preconditioning with ischemia: A delay of cell injury in ischemic myocardium. Circulation. 1986; 74: 1124–1136. DOI: 10.1161/01.CIR.74.5.1124

14. Khoury N., Koronowski K.B. Perez-Pinzon M.F. Long-term window of ischemic tolerance: An evolutionarily conserved form of metabolic plasticity regulated by epigenetic modifications? Neurol Neuromedicine. 2016; 1(2): 6–12. PMID: 27796011 PMCID: PMC5081687 DOI: 10.29245/2572.942x/2016/2.1021

15. Stenzel-Poore M.P, Stevens S.L., Simon R.P. Genomics of preconditioning. Stroke. 2004; 35: 2683–2686. DOI: 10.1161/01.STR.0000143735.89281.

16. Khoury N., Xu J., Stegelmann S.D., Jackson C.W, Koronowski K.B., Dave K.R., Young J.I., Perez-Pinzon M.A. Resveratrol Preconditioning Induces Genomic and Metabolic Adaptations within the Long-Term Window of Cerebral Ischemic Tolerance Leading to Bioenergetic Efficiency. Mol Neurobiol. 2019; 56 (6): 4549–4565. DOI: 10.1007/s12035-018-1380-6.

17. Jackson C.W., Escobar I., Xu J., Perez-Pinzon M.A. Effects of ischemic preconditioning on mitochondrial and metabolic neruoprotection: 5’ adenosine monophosphate-activated protein kinase and sirtuins. Brain Circ. 2018; 4: 54–61. PMID: 18417696 PMCID: PMC2678917 DOI: 10.1523/JNEUROSCI.5471-07.2008

18. Jiang S., Wu Y., Fang D., Chen.. Hypothermic preconditioning but not ketamine reduces oxygen and glucose deprivation induced neuronal injury correlated with downregulation of COX-2 expression in mouse hippocampal slices. Journal of Pharmacological Sciences. 2018; 137: 30–37. DOI: 10.1016/j.jphs.2018.04.001

19. Shevelev O.A., Butrov A.V. Technologies of therapeutic hypothermia in intensive care and resuscitation. Neotlozhnaya meditsina. 2010; 3: 45–49 [In Russ.]

20. Busto R., Deitrich W.D., Globus M.Y. Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. Cereb Blood Flow Metab. 1987; 7(6): 729–738. DOI: 10.1038/jcbfm.1987.127

21. Ruborg R., Gunnarsson K., Ström J.O. Predictors of post-stroke body temperature elevation. BMC Neurology. 2017; 17: 218. DOI: 10.1186/s12883-017-1002-3.

22. Santillo E., Antonelli-Incalzi R. Protection of coronary circulation by remote ischemic preconditioning: An intriguing research frontier. Cardiol. Plus. 2018; 3: 21–29. DOI: 10.4103/cp.cp_9_18

23. Lange R., Ingwall J., Hale S.L. Preservation of high-energy 40. phosphates by verapamil in reperfused myocardium. Circulation. 1984; 70: 734–741.

24. Kremastinos D.Th. The phenomenon of preconditioning today. Hell. J. Cardiol. 2005; 46: 1–4.

25. Anwar Abd-Elfattah S., Jian-Huo Guo, Shi-Ping Gao, Ahmed Elwatidy F., Ibrahim Hegab M., David Salter R., Mohammad Alfagih R., Nermine Abd-Elfattah A. Preconditioning of Healthy, Stunned, Infarcted, Hypertrophied and Failing Hearts: Role of Conditioning Reserve in Supplemental Cardioprotection. Clinics in Surgery. 2019; 4: 1–13

26. Ravincerova T., Farkasova V., Arkasova, Griecsova L., Carnicka S., Muraricova E., Barlaka E., Kolar F., Bartekova M., Lonek L., Slezak J., Lazou A. Remote Preconditioning as a Novel «Conditioning» Approach to Repair the Broken Heart: Potential Mechanisms and Clinical Applications. Physiol. Res. 2016; 65: 55–64.

27. Kawada T., Akiyama T., Shimizu S. Detection of endogenous acetylcholine release during brief ischemia in the rabbit ventricle: a possible trigger for ischemic preconditioning. Life Sci. 2009; 85: 597–601. DOI: 10.1016/j.lfs.2009.08.015

28. Headrick J.P., Lasley R.D. Adenosine receptors and reperfusion injury of the heart. Handb. Exp. Pharmacol. 2009; 193: 189–214. DOI: 10.1007/978-3-540-89615-9_7

29. Singh L., Kulshrestha R., Singh N., Jaggi A.S.. Mechanisms involved in adenosine pharmacological preconditioning-induced cardioprotection. Korean J Physiol Pharmacol. 2018; 22 (3): 225–234. DOI: 10.4196/kjpp.

30. Wang C., Hu S.M., Xie H., Qiao S.G., Liu H., Liu C.F. Role of mitochondrial ATP-sensitive potassium channel-mediated PKC-ε in delayed protection against myocardial ischemia/reperfusion injury in isolated hearts of sevoflurane-preconditioned rats. Braz J Med Biol Res. 2015; 48(6). DOI: 10.1590/1414-431x20143876

31. He A., Jiang Y., Gui C. The antiapoptotic effect of mesenchymal stem cell transplantation on ischemic myocardium is enhanced by anoxic preconditioning. Can. J. Cardiology. 2009; 25: 353–358. DOI: 10.1016/S0828-282X(09)70094-7

32. Randall М. Enhanced cardiac preconditioning in the isolated heart of the transgenic ((mREN-2)27) hypertensive. Cardiovascular. Research. 1997; 33: 400-409. PMID: 9074705

33. Likhvantsev V.V., Moroz V.V., Grebenchikov O.A., Gorokhovatsky Y.I., Zarzhetsky Y.V., Timoshin S.S., Levikov D.I., Shaibakova V.L. Ischemic and Pharmacological Preconditioning. Obshchaya Reanimatolgiya=General Reanimatology. 2011; 7(6): 59. [In Russ.]. DOI: 10.15360/1813-9779-2011-6-59.

34. Hausenloy D.J., Candilio L., Laing C., Kunst G., Pepper J., Kolvekar S., Evans R., Robertson S., Knight R., Ariti C., Clayton T., Yellon D. M. Effect of remote ischemic preconditioning on clinical outcomes in patients undergoing coronary artery bypass graft surgery (ERICCA): rationale and study design of a multi-centre randomized double-blinded controlled clinical trial. Clinical Research in Cardiology. 2012; 101: 339–348. DOI: 10.1007/s00392-011-0397-x

35. Murry C.E., Richard V. J., Jennings R. B., Reimer K. A. Myocardial protection is lost before contractile function recovers from ischemic preconditioning. Am. J. Physiol. 1991; 260: 796–804. DOI: 10.1152/ajpheart.1991.260.3.H796

36. Downey J.M.,. Cohen M.V. Preconditioning: Markers vs. epiphenomena. Basic Research in Cardiology. 1996; 91: 35–37. DOI: 10.1007/978-3-642-53793-6_45

37. Okubo S., Xi L., Bernardo N.L, Yoshida K., Kukreja R.C. Myocardial preconditioning: Basic concepts and potential mechanisms. Molecular and Cellular Biochemistry. 1999; 196: 3–12. DOI: 10.1007/978-1-4615-5097-6_1

38. Park H.A., Jonas E.A. N-Bcl-xL, a therapeutic target for neuroprotection. Neural Regen Res. 2017; 12: 1791–1794. DOI: 10.4103/1673-5374.219033

39. Gidday J.M. Cerebral preconditioning and ischaemic tolerance. Nat Rev Neurosci. 2006; 7: 437–448. DOI: 10.1038/nrn1927

40. Miller D.J., Fort P.E. Heat Shock Proteins Regulatory Role in Neurodevelopment. Front. Neurosci. 2018. DOI: 10.3389/fnins.2018.00821

41. Chang-Jin Park, Young-Su Seo. Heat Shock Proteins: A Review of the Molecular Chaperones for Plant. Immunity Plant Pathol J. 2015; 31(4): 323–333. DOI: 10.5423/PPJ.RW.08.2015.0150.

42. Chatterjee S., Burns N.F. Targeting Heat Shock Proteins in Cancer: A Promising Therapeutic Approach. Int J Mol Sci. 2017; 18(9). DOI: 10.3390/ijms18091978.

43. Yan Jun Song Chong, Bin Zhong Xian,, Bao Wang. Heat shock protein 70: A promising therapeutic target for myocardial ischemia–reperfusion injury. J of cellular Physiology. 2018; 234: 1190–1207. DOI: 10.1002/jcp.27110

44. Qi J. S., Kam K. W. L., Chen M., Wu S., Wong T. M. Failure to confer cardioprotection and to increase the expression of heat-shock protein 70 by preconditioning with a κ-opioid receptor agonist during ischaemia and reperfusion in streptozotocin-induced diabetic rats. Diabetologia. 2004; 47: 214–220. DOI: /10.1007/s00125-003-1288-0

45. Gidday J.M.. Cerebrovascular ischemic protection by pre- and postconditioning. Brain Circ. 2015; 1: 97–103 DOI: 10.4103/2394-8108.166379

46. Miyata Y., Yahara I. The 90 kDa heat shock protein Hsp90 binds and protects casein kinase II from self-aggregation and enhances its kinase activity. J. Biol. Chem. 1992; 267: 7042–7047.

47. Mosser D. D., Caron A. W., Bourget L. Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis. Mol. Cell. Biol. 1997; 17: 5317–5327. DOI: 10.1128/MCB.17.9.5317

48. Wang Y., Reis C., Applegate R., Stier G., Martin R., Zhang J.H. Ischemic conditioning-induced endogenous brain protection: Applications Pre-, Per- or Post-Stroke. Exp Neurol. 2015; 272: 26–40. DOI: 10.1016/j.expneurol.2015.04.009

49. Kitagawa K., Matsumoto M., Tagaya M. Ischemic tolerance phenomenon found in the brain. Brain Res. 1990; 528 (1): 21–24. DOI: 10.1016/0006-8993(90)90189-I

50. Yu S., Zhao M., Guo Т. Hypoxic preconditioning up-regulates glucose transport activity and glucose transporter (GLUT1 and GLUT3) gene expression after acute anoxic exposure in the cultured rat hippocampal neurons and astrocytes. Brain Res. 2008; 1211: 22–29. PMID: 18474279 DOI: 10.1016/j.brainres.2005.04.029

51. Shpargel K.B., Jalabi W., Jin Y. Preconditioning paradigms and pathways in the brain. Cleve Clin J Med. 2008; 75 (2): 77 PMID: 18540152 DOI: 10.3949/ccjm.75.suppl_2.s77

52. Gidday, J.M. Cerebral preconditioning and ischaemic tolerance. Nat Rev Neurosci. 2006; 7: 437–448. DOI: 10.1038/nrn1927

53. Guimarães Filho M.A., Cortez E., Garcia-Souza É.P., Soares Vde M., Moura A.S., Carvalho L, Maya MC, Pitombo MB. Effect of remote ischemic preconditioning in the expression of IL-6 and IL-10 in a rat model of liver ischemia-reperfusion injury. Acta Cir Bras. 2015; 30 (7): 452–460. DOI: 10.1590/S0102-865020150070000002.

54. Nakano S., Kato Н., Kogure К. Neuronal damage in the rat hippocampus in a new model of repeated reversible transient cerebral ischemia. Brain Res. 1989; 490 (1): 178–180. DOI: 10.1016/0006-8993(89) 90448-4

55. Atochin D.N., Clark J., Demchenko I.T. Rapid cerebral ischemic preconditioning in mice deficient in endothelial and neuronal nitric oxide synthases. Stroke. 2003; 34(5): 1299–1303. DOI: 10.1161/01.STR. 0000066870.70976.57

56. Shcherbak N.S., Rusakova A.G., Galagudza M.M., Yukina G.Yu., Barancevich E.R., Tomson V.V., Shlyakhto E.V. Change of Bcl-2 protein expression in hippocampal neurons after ischemic brain postconditioning. Morfologiya. 2015; 148: 21–27 [In Russ.].

57. Shcherbak, N.S., Galagudza M.M., Yukina G.Yu., Barantsevich E.R., Thomson V.V., Shlyakhto E.V. The Role of AMPA receptors in the mechanisms of neuroprotective effect of ischemic postconditioning of the brain. Arterialnaya gipertenziya. 2015; 21: 155–163 [In Russ.].

58. Shcherbak, N. S. Ovchinnikov D. A., Galagudza M. M., Yukina G. Yu., Barantsevich E. R., Thomson V. V., Shlyakhto E. V. Effect of ischemic postconditioning on Bcl-2 protein expression in neocortex neurons in global cerebral ischemia-reperfusion in rats. Translyatsionnaya meditsina. 2016; 3 (1): 63–72 [In Russ.].

59. Samojlenkova N.S., Gavrilova S.A., Koshelev V.B. Protective effect of hypoxic and ischemic preconditioning in local cerebral ischemia of rats. Doklady akademii nauk (Reports of the Academy of Sciences). 2007; 414 (2): 283–285[In Russ.].

60. Shevelev O. A., Kalenova I. E., Sharinova I. P., Butrov A.V. The experience of therapeutic hypothermia in the treatment of ischemic stroke. Nevrologiya, nejropsikhiatriya, psikhosomatika. 2012; 2: 41–45 [In Russ.].

61. Shevelev O. A., Butrov A.V., Kalenova I. E. Therapeutic hypothermia in emergency conditions. Meditsinskij alfavit. Neotlozhnaya meditsina.2011; 3: 46–50 [In Russ.].

62. Doberentz E., Markwerth P., Wagner R., Madea B. Expression of Hsp27 and Hsp70 and vacuolization in the pituitary glands in cases of fatal hypothermia. Forensic Science, Medicine and Pathology. 2017; 13: 312–316. DOI: 10.1007/s12024-017-9884-3

63. Peretti D., Bastide A., Radford H., Verity N., Molloy C., Guerra Martin M., Moreno J.A., Steinert J.R., Smith T., Dinsdale D., Willis A.E., Mallucci G.R. RBM3 mediates structural plasticity and protective effects of cooling in neurodegeneration. Nature. 2015; 518: 236–239.

64. Rzechorzek N.M. Hypothermic preconditioning in human cortical neurons: coupling neuroprotection to ontogenic reversal of tau. Edinburgh Research Archive, 2015.

65. Rzechorzek N.M., Connick P., Patani R., Selvaraj B.T., Chandrana S. Hypothermic Preconditioning of Human Cortical Neurons Requires Proteostatic Priming. EBioMedicine. 2015; 2(6): 528–535. PMID: 26287272 PMCID: PMC4534756 DOI: 10.1016/j.ebiom.2015.04.004

66. Mcilvoy L. Comparison of brain temperature to core temperature: a review of the literature. Journal of Neuroscience Nursing. 2004; 36: 23–29. PMID: 14998103 DOI: 10.1097/01376517-200402000-00004

67. Hayward J.N., Baker M.A. Role of cerebral arterial blood in the regulation of brain temperature in the monkey. Am. J. Physiol. 1968; 215: 389–403. PMID: 4969787 DOI: 10.1152/ajplegacy.1968.215.2.389

68. Cabanac M., Brinnel H. Blood flow in the emissary veins of the human head during hyperthermia. European Journal of Applied Physiology and Occupational Physiology. 1985; 54(2): 172–176. DOI: 10.1007/BF02335925

69. Mrozek S., Vardon F., Geeraerts T. Brain Temperature: Physiology and Pathophysiology after Brain Injury. Anesthesiology Research and Practice. 2012; Article ID 989487: 1-13. DOI: 10.1155/2012/989487

70. Mariak Z., White M. D., Lewko J. Direct cooling of the human brain by heat loss from the upper respiratory tract. Journal of Applied Physiology. 1999; 87(5): 1609–1613. DOI: 10.1152/jappl.1999.87.5.1609

71. Ma W., Liu W., Li M. Analytical heat transfer model for targeted brain hypothermia. International Journal of Thermal Sciences. 2016; 100: 66-74. DOI: 10.1016/j.ijthermalsci.2015.09.014

72. Uyðun M., Serhan Küçüka M., Özgür Çolpan C. 3B modeling and temperature distribution of human brain. 2016; 20th National Biomedical Engineering Meeting (BIYOMUT). DOI: 10.1109/BIYOMUT.2016.7849378

73. Vesnin S.G., Sedankin M.K. Mathematical modeling of the radiation of human tissues in the microwave range. Biomeditsinskaya radioelektronika. 2010; 9: 33–43 [In Russ.].

74. Stephen Blowers, Ian Marshall, Michael Thrippleton, Peter Andrews, Bridget Harris, Iain Bethune & Prashant Valluri. How does blood regulate cerebral temperatures during hypothermia? Scientific Reports. 2018; 8: 7877. https: //www.nature.com/articles/s41598-018-26063-7

75. Westwater E.R., Mätzler C., Crewell S. A review of surface-based microwave and millimeter-wave radiometric remote sensing of the troposphere. Radio Science Bulletin. 2004; 3010: 59–80. DOI: 10.23919/URSIRSB.2004.7909438

76. Kolesov S. N., Volovik M. G., Kravets P. Y. Thermal imaging and radiothermometry in traumatic brain injury. In book.: Konovalov A.N. (Ed.). Clinical guideline to traumatic brain injury. М.: «Antidor»; 1998: 429–439 [In Russ.].

77. Cheboksarov D. V., Butrov A.V., Shevelev O. A. Diagnostic possibilities of noninvasive thermomonitoring of the brain. Anestesiol. reanimatol.. 2015; 60 (1): 66–69 [In Russ.].

78. Shevelev O. A., Butrov A.V., Cheboksary D. V., Khodorovich N. A., Lapaev N. N., Pokatilova N. S. Pathogenetic role of cerebral hyperthermia in brain impairment. Klinicheskaya meditsina. 2017; 95 (4): 302–309 [In Russ.].

79. Molojavyi A., Preckel B., Comfère T. Effects of ketamine and its isomers on ischemic preconditioning in the isolated rat heart. Anesthesiology. 2001; 94(4): 623–629. DOI: 10.1097/00000542-200104000-00016

80. Kozlowski R.Z., Ashford M.L. Barbiturates inhibit ATP-K+ channels and voltage-activated currents in CRI-G1 insulin-secreting cells. Br. J. Pharmacol. 1991; 103 (4): 2021–2029. PMID: 1912991

81. Tsutsumi Y., Oshita S., Kitahata H. Blockade of adenosine triphosphate-sensitive potassium channels by thiamylal in rat ventricular myocytes. Anesthesiology. 2000; 92 (4): 1154–1159. DOI: 10.1097/00000542- 200004000-00034

82. Lochner A., Genade S., Tromp E. Ischemic preconditioning and the beta-adrenergic signal transduction pathway. Circulation. 1999; 9: 958–966. PMID: 10468527 DOI: 10.1161/01.cir.100.9.958

83. Cain B.S., Meldrum D.R., Cleveland J.C Jr. Clinical L-type Ca(2+) channel blockade prevents ischemic preconditioning of human myocardium. Mol. Cell Cardiol. 1999; 31 (12): 2191–2197. PMID: 10640446 DOI: 10.1006/jmcc.1999.1039

84. Мattia C., Coluzzi F. COX-2 inhibitors: pharmacological data and adverse effects. Minerva Anestesiol. 2005; 7: 461–470. PMID: 16012420


Review

For citations:


Shevelev O.A., Petrova M.V., Saidov Sh.Kh., Khodorovich N.A., Pradkhan P. Neuroprotection Mechanisms in Cerebral Hypothermia (Review). General Reanimatology. 2019;15(6):94-114. https://doi.org/10.15360/1813-9779-2019-6-94-114

Views: 1547


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)