Protective Effect of Lithium Chloride on EndotheliaL Cells in Septic Shock
https://doi.org/10.15360/1813-9779-2020-3-94-105
Abstract
The aim is to study the effectiveness of lithium chloride for preventing damage to the monolayer of endothelial cells in vitro exposed to serum of patients with septic shock.
Material and methods. Serum samples prepared from blood of 5 septic shock patients selected according to «Sepsis-3» criteria and 5 healthy volunteers (control serum) were used in the study. Blood for experiments was withdrawn within 2 hours after the diagnosis of septic shock. The Ea.hy926 endothelial cells were incubated with the serum of a patient with septic shock (toxic serum) or control serum for 3 hours at 37°C without or with lithium chloride at final concentrations of 0.01 mmol/l, 0.1 mmol/l, 1 mmol/l, 10 mmol/l. Lithium chloride was added 1 hour before the serum change. After incubation, the expressions of actin, VE-cadherin and claudin were assessed by immunofluorescent microscopy; the level and degree of phosphorylation of glycogen synthase kinase 3/1 (GSK-3/3) were determined using western blotting.
Results. Toxic serum significantly inhibited GSK-3/3 phosphorylation, induced cleavage of VE-cadherin and reduced the claudin inendothelial cells. Toxic serum also altered the shape of endothelial cells: they lost their native polygonal shape and became elongated with gaps between them. Incubation of endothelial cells monolayer with lithium chloride at concentrations equal or higher 1.0 mmol/l almost completely prevented cleavage of claudin, actin and VE-cadherin. When studying the in vitro protection of endothelial cells from effects of toxic serum with lithium chloride, pre-incubation with the drug at a concentration of 1 mmol/l for 1 hour prevented inactivation (dephosphorylation) of GSK-3/3 and even to stimulate its phosphorylation in 1-4 hours after exposure to the serum.
Conclusion. The study clearly showed the protective effect of lithium chloride on endothelial cell monolayer by activating phosphorylation of GSK-3/3 (enzyme conversion into inactive form). Moreover, the effect of lithium chloride exhibited a distinct dose-dependent character starting with a concentration of 0.01 mmol/l.
About the Authors
O. A. GrebenchikovRussian Federation
Oleg A. Grebenchikov
25 Petrovka Str., Bldg. 2, 107031 Moscow
V. T. Dolgikh
Russian Federation
Vladimir T. Dolgikh
25 Petrovka Str., Bldg. 2, 107031 Moscow
M. D. Prokofiev
Russian Federation
Maxim D. Prokofiev
25 Petrovka Str., Bldg. 2, 107031 Moscow
I. S. Kasatkina
Russian Federation
Irina S. Kasatkina
25 Petrovka Str., Bldg. 2, 107031 Moscow
A. V. Ershov
Russian Federation
Anton V. Ershov
25 Petrovka Str., Bldg. 2, 107031 Moscow
References
1. Baldessarini R.J., Tondo L., Davis P, Pompili M., Goodwin FK., Hennen J. Decreased risk of suicides and attempts during long-term lithium treatment: a meta-analytic review. Bipolar Disord. 2006; 8: 625-629. DOI: 10.1111/j.1399-5618.2006.00344.x. PMID: 17042835
2. Moroz V.V., Silachev D.N., Plotnikov E. Yu., Zorova L.D., Pevzner I.B., Grebenchikov O.A., LikhvantsevV.V. Mechanisms of cell damage and protection in ischemia/reperfusion and experimental rationale for the use of lithium-based preparations in anesthesiology. General Reanimatology=Obshchaya Reanimatologiya. 2013; 9 (1): 63-72 [In Russ.]. DOI: 10.15360/1813-9779-2013-1-63
3. Juhaszova M., Zorov D.B., Kim S.H., Pepe S., Fu Q., Fishbein K.W., Ziman B.D., Wang S., Ytrehus K., Antos C.L., Olson E.N., Sollott S.J. Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J. Clin. Invest. 2004; 113 (11): 1535-1549. DOI: 10.1172/JCI19906. PMID: 15173880
4. Faghihi M., Mirershadi F, Dehpour A.R., Bazargan M. Preconditioning with acute and chronic lithium administration reduces ische-mia/reperfusion injury mediated by cyclooxygenase not nitric oxide synthase pathway in isolated rat heart. Eur. J. Pharmacol. 2008; 597: 57-63. DOI: 10.1016/j.ejphar.2008.08.010. PMID: 18789320
5. Grebenchikov OA., LobanovA.V., ShajhutdinovaE.R., KuzovlevA.N., Ershov A.V., Lihvantsev V.V. Cardioprotective properties of lithium chloride in a rat myocardial infarction model. Patologiya krovoobrashcheniya i kardiokhirurgiya. 2019; 23 (2): 43-49 [In Russ.]. DOI: 10.21688/1681-3472-2019-2-43-49
6. Ostrova I.V., Grebenchikov OA., Golubeva N.V Neuroprotective Effect of Lithium Chloride in Rat Model of Cardiac Arrest. General Reani-matology=ObshchayaReanimatologiya. 2019; 15 (3): 73-82 [In Russ.]. DOI: 10.15360/1813-9779-2019-3-73-82
7. Balk R.A. Systemic inflammatory response syndrome (SIRS): Where did it come from and is it still relevant today? Virulence. 2014; 5 (1): 20-26. DOI: 10.4161/viru.27135. PMID: 24280933
8. Qin L., Wu X., Block M.L., Liu Y., Breese G.R., Hong J-S., Knapp D.J., Crews FT. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia. 2007; 55 (5): 453-462. DOI: 10.1002/glia.20467. PMID: 17203472
9. Alexander J.J., Jacob A., Cunningham P., Hensley L., Quigg R.J. TNF is a key mediator of septic encephalopathy acting through its receptor, TNF receptor-1. Neurochem. Int. 2008; 52: 447-456. https: //doi.org/10.1016/j.neuint.2007.08.006. PMID: 17884256
10. Parkos A., Colgan P., Madara J.L. Interaction of Neutrophils With Epithelial Cells: Lessons From the Intestine. J Am Soc Nephrol.1994; 5 (2): 138-152. PMID: 7993993
11. Feletou M., Vanhoutte P. Endothelial dysfunction: a multifaceted disorder. Am. J. Physiol. Heart Circ. Physiol. 2006; 291 (3): H985-H1002. DOI: 10.1152/ajpheart.00292.2006. PMID: 16632549. PMID: 16632549
12. Hughes C.G., Patel M.B., Pandharipande P.P. Pathophysiology of acute brain dysfunction: what’s the cause of all this confusion? Curr. Opin. Crit. Care. 2012; 18 (5): 518-526. DOI: 10.1097/MCC.0b013e328357effa PMID: 22941208
13. Hirase T., Node K. Endothelial dysfunction as a cellular mechanism for vascular failure. Am. J. Physiol. Heart Circ. Physiol. 2012; 302 (3): H499-H505. DOI: 10.1152/ajpheart.00325.2011. PMID: 22081698
14. Opal S., van der Poll T. Endothelial barrier dysfunction in septic shock. J. Intern. Med. 2014; 277 (3): 277-293. DOI: 10.1111/joim.12331. PMID: 25418337
15. Pearson T.A., Mensah GA.,AlexanderR.W.,AndersonJ.L., CannonR.O. 3rd, Criqui M., Fadl Y.Y., Fortmann S.P., Hong Y., Myers G.L., Rifai N., Smith S.C. Jr., Taubert K., Tracy R.P., Vinicor F.; Centers for Disease Control and Prevention; American Heart Association. Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the centers for disease control and prevention and the American Heart Association. Circulation. 2003; 107 (3): 499-511. DOI: 10.1161/01.CIR.0000052939.59093.45. PMID: 12551878
16. SingerM., Deutschman C.S., Seymour C.W., Shankar-HariM., Annane D., Bauer M., Bellomo R., Bernard G.R., Chiche J.D., Coopersmith C.M., Hotchkiss R.S., Levy M.M., Marshall J.C., Martin G.S., Opal S.M., Rubenfeld G.D., van der Poll T., Vincent J.L., Angus D.C. The Third International Consensus definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016; 315 (8): 801-810. DOI: 10.1001/jama.2016.0287
17. Galkin I.I., Pletjushkina O. Y., Zinovkin RA., Zakharova V.V., Birjukov I.S., Chernyak B.V., Popova E.N. Mitochondria-targeted antioxidants prevent TNFa-induced endothelial cell damage. Biochemistry (Mosc). 2014; 79: 124-130. DOI: 10.1134/S0006297914020059
18. Polat G., Ugan R.A., Cadirci E., HaliciZ. Sepsis and Septic Shock: Current Treatment Strategies and New Approaches. Eurasian J Med. 2017; 49: 53-58. DOI: 10.5152/eurasianjmed.2017.17062. PMID: 28416934
19. Abello PA., Fidler S.A., Bulkley G.B., Buchman T.G. Antioxidants modulate induction of programmed endothelial cell death (apoptosis)by endotoxin. Arch Surg. 1994; 129 (2): 134-140. DOI: 10.1001/archsurg.1994.01420260030003. PMID: 8304825
20. Plotnikov E. Y., Babenko V.A., Pevzner I.B., Zorova L.D., Likhvantsev V.V., Zorova D.B. Nephroprotective effect of GSK-3beta inhibition by lithium ions and mu-opioid receptor agonist dalargin on gentamicin-induced nephrotoxicity. Toxicology Letters Journal. 2013; 220: 303-308. DOI: 10.1016/j.toxlet.2013.04.023
21. BorisovK.Y., MorozV.V., GrebenchikovO.A., PlotnikovE.Y., LevikovD.I., Cherpakov R.A., Likhvantsev VV. Effect of Propofol on Sevoflurane-Induced Myocardial Preconditioning in the Experiment. General Reanimatology=Obshchaya Reanimatologiya. 2013; 9 (4): 30-33 [In Russ.]. DOI: 10.15360/1813-9779-2013-4-30
22. Shevelev O.A., Petrova M.V, Saidov S.K., Khodorovich N.A., Pradkhan P. Neuroprotection Mechanisms in Cerebral Hypothermia (Review). General Reanimatology=Obshchaya Reanimatologiya. 2019; 15 (6): 94-114. [In Russ.]. DOI: 10.15360/1813-9779-2019-6-94-114
Review
For citations:
Grebenchikov O.A., Dolgikh V.T., Prokofiev M.D., Kasatkina I.S., Ershov A.V. Protective Effect of Lithium Chloride on EndotheliaL Cells in Septic Shock. General Reanimatology. 2020;16(3):94-105. https://doi.org/10.15360/1813-9779-2020-3-94-105