Preview

General Reanimatology

Advanced search

Intramyocardial Injection of Plasmid Encoding Platelet Growth Factor Increases Epicardial-Mediated Post Infarction Myocardial Vascularization (Experimental Study)

https://doi.org/10.15360/1813-9779-2020-6-54-64

Abstract

Increasing incidence of ischemic diseases and limited resources for their treatment stimulate increased interest in studying the mechanisms of vascularization and finding new approaches for its promotion. One of these approaches is gene therapy aimed at activating the epicardium to produce the vascular precursor cells and microenvironment for the «assembly» of de novo vessels.

The aim is to investigate the possibility of activating epicardial cells and post infarction cardiac vascularization by injecting a genetic construct encoding PDGFBB.

Material and methods. A model of experimental myocardial infarction in a rat with subsequent intramyocardial injection of normal saline solution, control plasmid and plasmid encoding PDGFBB was used. The study of PDGFBB effect on epicardial cell activity was performed on the ex vivo model, as well as in vitro mesothelial cell culture.

Results. Post infarction injection of plasmid encoding PDGFBB increases the density of the vascular network in the peri-infarct area as well as migration of pericytes to the injured zone. PDGFBB promotes activation of epicardial cell pool and expression of smooth muscle cell markers in them (shown on the ex vivo model), as well as stimulates activation of epithelial-mesenchymal transition (in vitro).

Conclusion. Intramyocardial injection of a genetic construct encoding PDGFBB after an experimental myocardial infarction stimulated vascularization of the peri-infarction zone, which may have been partially due to the activation of the epicardial cell pool.

About the Authors

K. V. Dergilev
Institute for Experimental Cardiology, National Medical Research Center for Cardiology, Ministry of Health of Russia
Russian Federation

Konstantin V. Dergilev

15a 3rd Cherepkovskaya Str., 121552 Moscow



Z. I. Tsokolaeva
Institute for Experimental Cardiology, National Medical Research Center for Cardiology, Ministry of Health of Russia; V.A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation

Zoya I. Tsokolaeva

15a 3rd Cherepkovskaya Str., 121552 Moscow; 25 Petrovka Str., Bldg. 2, 107031 Moscow



I. B. Beloglazova
Institute for Experimental Cardiology, National Medical Research Center for Cardiology, Ministry of Health of Russia
Russian Federation

Irina B. Beloglazova

15a 3rd Cherepkovskaya Str., 121552 Moscow



D. O. Traktuev
V.A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation

Dmitry O. Traktuev

25 Petrovka Str., Bldg. 2, 107031 Moscow



A. V. Gorelova
Center for Regenerative Medicine, Department of Medicine, College of Medicine, University of Florida; Manchester University, Faculty of Biology, Medicine and Health
United States

Alina V. Gorelova

1600 SW Archer Rd, M421 Gainesville, FL 32610; M13 9PL Oxford Road, Manchester



А. V. Zubko
Center for Cardiovascular Surgery, Ministry of Health of Russia
Russian Federation

Alexander V. Zubko

135 Rublevskoe highway, 121552 Moscow



B. N. Kulbitsky
No. 3 Hospital for War Veterans, Moscow Department of Health
Russian Federation

Boris N. Kulbitsky

4 Startovaya Str., 129336 Moscow



Е. V. Parfenova
Institute for Experimental Cardiology, National Medical Research Center for Cardiology, Ministry of Health of Russia
Russian Federation

Elena V. Parfenova

15a 3rd Cherepkovskaya Str., 121552 Moscow



References

1. Heusch G. Myocardial ischaemia-reperfusion injury and cardioprotection in perspective. Nat Rev Cardiol. 2020; 3. DOI: 10.1038/s41569-020-0403-y.

2. Adams R., Alitalo K. Molecular regulation of angiogenesis and lym-phangiogenesis/ Nat Rev Mol Cell Biol. 2007; 8 (6): 464-478. DOI: 10.1038/nrm2183.

3. Bergers G., Song S. The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol. 2005; 7 (4): 452-464. DOI: 10.1215/S1152851705000232.

4. Ross R., Glomset J., Kariya B., Harker L.A. Platelet-dependent serum factor that stimulates the proliferation of arterial smooth muscle cells in vitro. Proc Natl Acad Sci U S A. 1974; 71 (4): 1207-1210. DOI: 10.1073/pnas.71.4.1207.

5. Guo P., Hu B., Gu W. Platelet-derived growth factor-B enhances glioma angiogenesis by stimulating vascular endothelial growth factor expression in tumor endothelia and by promoting pericyte recruitment. Am J Pathol. 2003; 162: 1083-1093. DOI: 10.1016/S0002-9440(10)63905-3.

6. Affleck D.G., Bull D.A., Bailey S.H., Albanil A., Connors R., Stringham J.C., Karwande S.V. PDGF (BB) increases myocardial production of VEGF: shift in VEGF mRNA splice variants after direct injection of bFGF, PDGF (BB), and PDGF (AB). J Surg Res. 2002; 107: 203-209. DOI: 10.1006/jsre.2002.6510

7. Sato N., Beitz J., Kato J., Yamamoto M., Clark J., Calabresi P., Raymond A., Frackelton A. Platelet-derived growth factor indirectly stimulates angiogenesis in vitro. Am. J. Pathol. 1993; 142: 1119-1130. PMID: 7682762

8. FolestadE., Kunath A., Wagsdter D. PDGF-C and PDGF-D signaling in vascular diseases and animal models. Mol Aspects Med. 2018; 62: 1-11. DOI: 10.1016/j.mam.2018.01.005.

9. Medamana J., Clark R.A., Butler J. Platelet-Derived Growth Factor in Heart Failure. Handb Exp Pharmacol. 2017; 243: 355-369. DOI: 10.1007/164_2016_80.

10. Dergilev K., Komova A., Tsokolaeva Z., Beloglazova I., Parfenova E. Epicardium as a New Target for Regenerative Technologies in Cardiology. Geny & Kletki. 2020; 14 (2): 33-40 [In Russ.] DOI: 10.23868/202004016

11. Winter E.M., Gittenberger-de Groot A.C. Epicardium-derived cells in cardiogenesis and cardiac regeneration. Cell Mol Life Sci. 2007; 64: 692-703. DOI: 10.1007/s00018-007-6522-3

12. Olivey H.E., Svensson E.C. Epicardial-myocardial signaling directing coronary vasculogenesis. Circ Res. 2010; 106: 818-832. DOI: 10.1161/CIRCRESAHA.109.209197

13. Dergilev K., Tsokolaeva Z., Beloglazova I., Ratner E., Molokotina Yu., Parfenova E. Characterization of the angiogenic properties of C-KIT+ — myocardial cells. Geny & Kletki. 2018: 13 (3): 82-88. [In Russ.] DOI: 10.23868/201811038

14. Cao J., Poss K.D. The epicardium as a hub for heart regeneration. Nat Rev Cardiol. 2018; 15 (10): 631-647. DOI: 10.1038/s41569-018-0046-4

15. Edelberg J.M., Tang, L., Hattori, K., Lyden, D., Rafii S. Young adult bone marrow-derived endothelial precursor cells restore aging-impaired cardiac angiogenic function. Circ. Res. 2002 90: 89-93. DOI: 10.1161/01.res.0000020861.20064.7e

16. Wyler von Ballmoos M., Yang Z., Volzmann J., Baumgartner I., Kalka C., Di Santo S. Endothelial progenitor cells induce a phenotype shift in differentiated endothelial cells towards PDGF/PDGFRe axis-mediated angiogenesis. PLoS One. 2010; 5 (11): 14107. DOI: 10.1371/journal.pone.0014107

17. Wilkinson-Berka J.L., Babic S., De Gooyer T. Inhibition of platelet-derived growth factor promotes pericyte loss and angiogenesis in ischemic retinopathy. Am J Pathol. 2004; 164: 1263-1273. DOI: 10.1016/S0002-9440(10)63214-2

18. Lindahl P., Johansson B.R., Leveen P., Betsholtz C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science. 1997; 277: 242-245. DOI: 10.1126/science.277.5323.242

19. Leveen P., Pekny M., Gebre-Medhin S., Swolin B., Larsson E., Betsholtz C. Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev. 1994; 8: 1875-1887. DOI: 10.1101/gad.8.16.1875

20. Soriano P. Abnormal kidney development and hematological disorders in PDGF beta-receptor mutant mice. Genes Dev. 1994; 8: 1888-1896. DOI: 10.1101/gad.8.16.1888

21. Sano H., Sudo T., Yokode M. Functional blockade of platelet derived growth factor receptor-beta but not of receptor-alpha prevents vascular smooth muscle cell accumulation in fibrous cap lesions inapolipoprotein E-deficient mice. Circulation 2001; 103: 2955-2960. DOI: 10.1161/01.cir.103.24.2955

22. Lavine K.J., Yu K., White A.C., Zhang X., Smith C., Partanen J., Ornitz D.M. Endocardial and epicardial derived FGF signals regulate myocardial proliferation and differentiation in vivo. Dev Cell. 2005; 8: 85-95. DOI: 10.1016/j.devcel.2004.12.002

23. Pennisi D.J., Mikawa T. Normal patterning of the coronary capillary plexus is dependent on the correct transmural gradient of FGF expression in the myocardium. Dev Biol. 2005; 279: 378-390. DOI: 10.1016/j.ydbio.2004.12.028

24. Wang K., Shen H., Gan P., Cavallero S., Kumar S.R., Lien C.L., Sucov H.M. Differential roles of insulin like growth factor 1 receptor and insulin receptor during embryonic heart development. BMC Dev Biol. 2019; 19: 5. DOI: 10.1186/s12861-019-0186-8

25. Ramjee V., Li D., Manderfield L.J., Liu F., Engleka K.A., Aghajanian H., Rodell C.B., Lu W., Ho V., Wang T. Epicardial YAP/TAZ orchestrate an immunosuppressive response following myocardial infarction. J Clin Invest. 2017; 127: 899-911. DOI: 10.1172/JCI88759

26. Balmer G.M., Bollini S., Dube K.N., Martinez-Barbera J.P., Williams O., Riley P.R. Dynamic haematopoietic cell contribution to the developing and adult epicardium. Nat Commun. 2014; 5: 4054. DOI: 10.1038/ncomms5054


Review

For citations:


Dergilev K.V., Tsokolaeva Z.I., Beloglazova I.B., Traktuev D.O., Gorelova A.V., Zubko А.V., Kulbitsky B.N., Parfenova Е.V. Intramyocardial Injection of Plasmid Encoding Platelet Growth Factor Increases Epicardial-Mediated Post Infarction Myocardial Vascularization (Experimental Study). General Reanimatology. 2020;16(6):54-64. https://doi.org/10.15360/1813-9779-2020-6-54-64

Views: 644


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)