Using Heart Rate Variability Monitoring for Dexmedetomidine Dosing in Neurointensive Care Patients
https://doi.org/10.15360/1813-9779-2021-1-16-26
Abstract
Aim: to validate the use of heart rate variability monitoring during dexmedetomidine administration in patients with brain injury of various etiologies.
Material and methods. The study included 25 patients (14 male, 11 female, mean age 58.2±1.81 years) 20 and more days after traumatic brain injury (TBI) (n=9; 36%), acute stroke (n=4; 16%), anoxic brain injury (n=6; 24%), subarachnoid hemorrhage (SAH) (n=6; 24%). Dexmedetomidine was prescribed because of sympathetic hyperactivity as diagnosed by heart rate variability (HRV). The following indices were measured: SI (stress index, in normalized units [nu]), SDNN (standard deviation of all normal sinus RR intervals over 24 h, in ms), RMSSD (root-mean-square of successive normal sinus RR interval difference, in ms), pNN 50% (the percentage of successive normal sinus RR intervals >50 ms), TP (total power of the frequency spectrum, in ms2). HRV parameters were determined prior to dexmedetomidine infusion (baseline), on days 1–3, 4–5, 9–10, 15–20 of drug administration. Sympathetic hyperactivity was diagnosed by determining following values: SDNN < 13.31 ms, RMSSD < 5.78 ms, pNN 50% < 0.110%, SI > 900 nu, and TP < 200 ms2. Normal reference ranges for HRV parameters were as follows: SDNN (13.31–41.4 ms), RMSSD (5.78–42.3 ms), pNN5 0% (0.110–8.1%), SI (80–900 nu), and TP (200–2000 ms2).
Results. The starting dose of dexmedetomidine for sympathetic hyperactivity was 0.12–0.24 µg/kg/hr (mean dose 0.16±0.01; total 200 µg/day). According to digital HRV data, the effective dose ED50 of dexmedetomidine was 0.26±0.03 µg/kg/hour (353.8±35.1 µg total per day) that was achieved on day 9–10 of drug administration.
Conclusion. Electrophysiological neuromonitoring of the autonomic nervous system function increases the efficacy of dexmedetomidine administration in patients with brain injury of various etiologies.
About the Authors
Yu. Yu. KiryachkovRussian Federation
Yuri Yu. Kiryachkov
777 Lytkino 141534, Solnechnogorsk district, Moscow region
M. V. Petrova
Russian Federation
Marina V. Petrova
777 Lytkino 141534, Solnechnogorsk district, Moscow region
B. G. Muslimov
Russian Federation
Bagautdin G. Muslimov
2 Kashtanovaya Alley Str., Build 1, 124489 Zelenograd
O. V. Gridnev
Russian Federation
Oleg V. Gridnev
2 Kashtanovaya Alley Str., Build 1, 124489 Zelenograd
References
1. Mahmoud M., Mason K.P. Dexmedetomidine: review, update, and future considerations of paediatric perioperative and periprocedural applications and limitations. BJA: British Journal of Anaesthesia, 2015; 115 (2): 171–182. DOI: 10.1093/bja/aev226.
2. Sharp D.B., Wang X., Mendelowitz D. Dexmedetomidine decreases inhibitory but not excitatory neurotransmission to cardiac vagal neurons in the nucleus ambiguus. Brain Res. 2014; 1574: 1–5. DOI: 10.1016/j.brainres.2014.06.010. PMID 24933328.
3. Aikaterini A., Ioannis D., Dimitrios G., Konstantinos S., Vasilios G., George P. Bradycardia Leading to Asystole Following Dexmedetomidine Infusion during Cataract Surgery: Dexmedetomidine-Induced Asystole for Cataract Surgery. Case Rep Anesthesiol. 2018; 2018: 2896032. DOI: 10.1155/2018/2896032. PMID: 30627445.
4. Jin S., Zhou X. Influence of dexmedetomidine on cardiac complications in non-cardiac surgery: a meta-analysis of randomized trials. Int J Clin Pharm. 2017; 39 (4): 629–640. DOI: 10.1007/s11096-017-0493-8. PMID: 2866046.
5. Mahmoud M., Mason K.P. Dexmedetomidine: review, update, and future considerations of paediatric perioperative and periprocedural applications and limitations. BJA: British Journal of Anaesthesia. 2015: 115 (2): 171–182 DOI: 10.1093/bja/aev226]
6. Peng Y., Haifeng Z., Haodong C., Zijin Z., Huahai Z., Shuguang Z., Lili G., Lei S., Xiaoliang L., Zhengxiang L. Dexmedetomidine attenuates acute paroxysmal sympathetic hyperactivity. Oncotarget. 2017; 8 (40): 69012–69019. DOI: 10.18632/oncotarget.16920 PMCD5620316.
7. Kiryachkov Yu. Yu., Saltanov A. I., Khmelevsky Ya. M. Computer analysis of heart rate variability. New opportunities for the anesthesiologist and doctors of other specialties. Vestnik intensivnoyj terapii. 2002 1: 3–8 [In Russ.].
8. Esterov D., Greenwald B.D. Autonomic dysfunction after mild traumatic brain injury. Brain Sci. 2017; 11; 7 (8). DOI: 10.3390/brainsci7080100. PMID: 28800081.
9. Meyfroidt G., Baguley I.J., Menon D.K. Paroxysmal sympathetic hyperactivity: the storm after acute brain injury. Lancet Neurol. 2017; 16 (9): 721–729. DOI: 10.1016/S1474-4422(17)30259-4. PMID 28816118.
10. Godo S., Irino S., Nakagawa A., Kawazoe Y., Fujita M., Kudo D., Nomura R., Shimokawa H., Kushimoto S. Diagnosis and Management of Patients with Paroxysmal Sympathetic Hyperactivity following Acute Brain Injuries Using a Consensus-Based Diagnostic Tool: A Single Institutional Case Series. Tohoku J Exp Med. 2017; 243 (1): 11–18. DOI: 10.1620/tjem.243.11. PMID 28890524.
11. Jiang L., Hu M., Lu Y., Cao Y., Chang Y., Dai Z. The protective effects of dexmedetomidine on ischemic brain injury: A meta-analysis. J Clin Anesth. 2017; 40: 25–32. DOI: 10.1016/j.jclinane.2017.04.003. PMID 28625441.
12. Yamanaka D., Kawano T., Nishigaki A., Aoyama B., Tateiwa H., Shigematsu-Locatelli M., Locatelli F.M., Yokoyama M. Preventive effects of dexmedetomidine on the development of cognitive dysfunction following systemic inflammation in aged rats. J Anesth. 2017; 31 (1): 25–35. DOI: 10.1007/s00540-016-2264-4. PMID 27738803.
13. Kanashiro A., Sônego F., Ferreira R.G., Castanheira F.V.,Leite C.A., Borges V.F., Nascimento D.C., Cólon D.F.,Alves-Filho J.C., Ulloa L., Cunha F.Q. Therapeutic potential and limitations of cholinergic antiinflammatory pathway in sepsis. Pharmacol Res. 2017; 117: 1–8. DOI: 10.1016/j.phrs.2016.12.014. PMID 27979692.
14. Samuel S., Allison T.A., Lee K., Choi H.A. Pharmacologic management of paroxysmal sympathetic hyperactivity after brain injury. J. Neurosci. Nurs. 2016; 48 (2): 82–89. DOI: 10.1097/JNN.0000000000000207. PMID: 26954919.
15. Wang X., Ji J., Fen L., Wang A. Effects of dexmedetomidine on cerebral blood flow in critically ill patients with or without traumatic brain injury: a prospective controlled trial. Brain Inj. 2013; 27 (13–14): 1617– 1622. DOI: 10.3109/02699052.2013.831130. PMID 24102571.
16. Ding X.D., Zheng N.N., Cao Y.Y., Zhao G.Y., Zhao P. Dexmedetomidine preconditioning attenuates global cerebral ischemic injury following asphyxial cardiac arrest. Int J Neurosci. 2016; 126 (3): 249–256. DOI: 10.3109/00207454.2015.1005291. PMID 25565380.
17. Wu G.J., Chen J.T., Tsai H.C., Chen T.L., Liu S.H., Chen R.M. Protection of Dexmedetomidine Against Ischemia/Reperfusion-Induced Apoptotic Insults to Neuronal Cells Occurs Via an Intrinsic MitochondriaDependent Pathway. J Cell Biochem. 2017; 118 (9): 2635–2644. DOI: 10.1002/jcb.25847. PMID 27987330.
18. Endesfelder S., Makki H., von Haefen C., Spies C.D., Bührer C., Sifringer M. Neuroprotective effects of dexmedetomidine against hyperoxiainduced injury in the developing rat brain. PLoS One. 2017; 12 (2): e0171498. DOI: 10.1371/journal.pone.0171498. PMID 28158247.
19. Akpýnar O., Nazýroðlu M., Akpýnar. Different doses of dexmedetomidine reduce plasma cytokine production, brain oxidative injury, PARP and caspase expression levels but increase liver oxidative toxicity in cerebral ischemia-induced rats. Brain Res Bull. 2017; 130: 1– 9. DOI: 10.1016/j.brainresbull.2016.12.005. PMID 28007581.
20. Xu K.L., Liu X.Q., Yao Y.L., Ye M.R., Han Y.G., Zhang T.,Chen G., Lei M. Effect of dexmedetomidine on rats with convulsive status epilepticus and association with activation of cholinergic anti-inflammatory pathway. Biochem Biophys Res Commun. 2018; 495 (1): 421–426. DOI: 10.1016/j.bbrc.2017.10.124. PMID 29080744.
21. Shin S., Lee J.W., Kim S.H., Jung Y.S., Oh Y.J. Heart rate variability dynamics during controlled hypotension with nicardipine, remifentanil and dexmedetomidine. Acta Anaesthesiol Scand. 2014; 58 (2): 168– 176. DOI: 10.1111/aas.12233. PMID 24261345.
22. Cho J.S., Kim S.H., Shin S., Pak H.N., Yang S.J., Oh Y.J. Effects of Dexmedetomidine on Changes in Heart Rate Variability and Hemodynamics During Tracheal Intubation. Am J Ther. 2016; 23 (2): e369- 76. DOI: 10.1097/MJT.0000000000000074. PMID 24832388.
23. Kim M.H., Lee K.Y., Bae S.J., Jo M., Cho J. Intraoperative dexmedetomidine attenuates stress responses in patients undergoing major spine surgery. Minerva Anestesiol. 2019; 85 (5): 468–477. DOI: 10.23736/S0375-9393.18.12992-0. PMID: 30226342.
Review
For citations:
Kiryachkov Yu.Yu., Petrova M.V., Muslimov B.G., Gridnev O.V. Using Heart Rate Variability Monitoring for Dexmedetomidine Dosing in Neurointensive Care Patients. General Reanimatology. 2021;17(1):16-26. https://doi.org/10.15360/1813-9779-2021-1-16-26