Hemodynamic Parameters After Prone Positioning of COVID-19 Patients
https://doi.org/10.15360/1813-9779-2021-3-32-41
Abstract
Aim of the study. To examine the effect of prone positioning on hemodynamics in patients with COVID-19.
Materials and methods. The study enrolled 84 patients of both sexes with community-acquired multisegmental viral and bacterial pneumonia associated with COVID-19, who were divided into groups according to the type of respiratory support. The tests were performed using the integrated hardware and software system for noninvasive central hemodynamic assessment by volumetric compression oscillometry.
Results. We found that the pulse blood pressure velocity decreased from 281 [242.0; 314.0] to 252 [209; 304] mm Hg/s in patients with severe COVID-19 on oxygen support (p=0.005); volume ejection rate decreased from 251 [200; 294] to 226 [186; 260] ml/s (P=0.03); actual/estimated normalized vascular resistance ratio dropped from 0.549 [0.400; 0.700] to 0.450 [0.300; 0.600] (P=0.002), while the arterial wall compliance increased from 1.37 [1.28; 1.67] to 1.45[1.10; 1.60] ml/mm Hg (P=0.009). Prone positioning of patients on noninvasive lung ventilation associated with a reduction of linear blood flow rate from 40.0 [34.0; 42.0] to 42.5 [42.5; 47.25] cm/s (7=0.04) and arterial wall compliance from 1.4 [1.24; 1.50] to 1.32 [1.14; 1.49] ml/mm Hg (7=0.03). Prone positioning of patients on invasive lung ventilation did not result in significant hemodynamic changes.
Conclusion. The greatest hemodynamic changes during prone positioning were found in patients on oxygen respiratory support, whereas the least significant alterations were seen in patients on invasive ventilatory support.
About the Authors
D. S. ShilinRussian Federation
Dmitry S. Shilin
39a Gorky Str., 672000 Chita
K. G. Shapovalov
Russian Federation
Konstantin G. Shapovalov
39a Gorky Str., 672000 Chita
References
1. Interim guidelines « Prevention, diagnosis and treatment of new coronavirus infection (COVID-19)» Version 7 (approved by the Ministry of Health of the Russian Federation on June 3, 2020). Ministry of Health of the Russian Federation: [website]. — 2020. — URL: https://static0.rosminzdrav.ru/system/attachments/attaches/000/050/584/original/03062020_%D0%9CR_COVID-19_v7.pdf (accessed 22.06.2020) [In Russ.].
2. Malinnikova E. Yu. New coronavirus infection. Today’s look at the pandemic of the twenty-first century. Infektsionnye bolezni: novosti, mneniya, obuchenie. 2020; 9 (2): 18-32 [In Russ.]. DOI: 10.33029/2305-3496-2020-9-2-18-32
3. Chen Y., Liu Q., Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J. Med. Virol. 2020; 92: 18-423. DOI: 10.1002/jmv.25681 PMID: 31967327
4. Stopcoronavirus. rf—The official Internet resource for informing the public about the coronavirus (COVID-19) [In Russ.].
5. QianZ., Dominguez S.R., HolmesK.V. Role of the spike glycoprotein of human Middle East respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia formation. PLoS ONE. 2013; 8: e76469. DOI: 10.1371/journal.pone.0076469.
6. ZhangX., Sun D., Song J.W., Zullo J., Lipphardt M., Coneh-Gould L., Goligorsky M.S. Endothelial cell dysfunction and glycocalyx—A vicious circle. Matrix. Biol. 2018; 71-72: 421-431. DOI: 10.1016/j.mat-bio.2018.01.026.
7. Bourgonje A.R., Abdulle A.E., Timens W., Hillebrands J.-L., Navis G.J., Gordijn S.J., BollingM.C., Dijkstra G.,VoorsA.A., OsterhausA.D., Voort PH., Mulder D.J, Goor H. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J Pathol. 2020; 251 (3): 228-248. Epub 2020 Jun 10. DOI: 10.1002/path.5471.
8. Cao Y, Li L, FengZ, Wan S., Huang P, Sun X., Wen F., HuangX., Ning G., Wang W. Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor aCe2 in different populations. Cell Discov. 2020; 6: 11. DOI: 10.1038/s41421-020-0147-1 PMID: 32133153
9. Naeije R., Huez S., Lamotte M., Retailleau K., Neupane S., Abramowicz D.,Faoro V, Pulmonary artery pressure limits exercise capacity at high altitude. Eur. Respir. J. 2010; 36 (5): 1049-1055. DOI: 10.1183/09031936.00024410 PMID: 20378601
10. Gaur P., Saini S., Vats P., Kumar B. Regulation, signalling and functions of hormonal peptides in pulmonary vascular remodelling during hypoxia Endocrine. 2018; 59 (3): 466-480. Epub 2018 Jan 30. DOI: 10.1007/s12020-018-1529-0 PMID: 29383676
11. Kosovskikh A.A., Churlyaev Yu.A., Kan S.L., Lyzlov A.N., Kirsanov T.V., VartanyanA.R. Central Hemodynamics and Microcirculation in Critical Conditions. Obshchaya Reanimatologiya=General Rea-nimatology. 2013; 9 (1): 18. [In Russ.] DOI: 10.15360/1813-9779-2013-1-18
12. LeM., Rosales R., Shapiro L.,YHuang L.. The Down Side of Prone Positioning: The Case of a Coronavirus 2019 Survivor. Am J Phys Med Re-habil. 2020; 99 (10): 870-872. DOI: 10.1097/PHM.0000000000001530. PMID: 32657818.
13. Carsetti A., Damia Paciarini A., Marini B., Pantanetti S., Adrario E., Donati A.. Prolonged prone position ventilation for SARS-CoV-2 patients is feasible and effective. Crit Care. 2020; 24: 225. DOI: 10.1186/s13054-020-02956-w. PMID: 32414420.
14. Bevegard, S., Holmgren A., Jonsson B. The effect of body position on the circulation at rest and during exercise, with special reference to the influence on the stroke volume. Acta Physiol. Scand. 1960; 49: 279-298 DOI: 10.1111/j.1748-1716.1960.tb01953.x. PMID: 13800272.
15. Forton K., Motoji Y., Deboeck G., Faoro V, NaeijeR. Effects of body position on exercise capacity and pulmonary vascular pressure-flow relationships. J. Appl. Physiol. 1985; 121: 1145-1150. DOI: 10.1152/jap-plphysiol.00372.2016. PMID: 27763874.
16. Moore Z., Patton D., Avsar P, L McEvoy N.,Curley G., Budri A., Nugent L., Walsh S., O’Connor T.. Prevention of pressure ulcers among individuals cared for in the prone position: lessons for the COVID-19 emergency J Wound Care. 2020; 29 (6): 312-320. DOI: 10.12968/jowc.2020.29.6.312. PMID: 32530776.
17. Wieslander B., Ramos J.G., Ax M. Petersson J., Ugander M., Supine, prone, right and left gravitational effects on human pulmonary circulation. J Cardiovasc Magn Reson. 2019; 21, 69. DOI: 10.1186/s12968-019-0577-9. PMID: 31707989.
18. SchroederE.C., RosenbergA.J., Hilgenkamp T.I.M., White D.W., Baynard T., Fernhall B. Effect of upper body position on arterial stiffness: influence of hydrostatic pressure and autonomic function. J Hyper-tens 2017 Dec; 35 (12): 2454-2461. DOI: 10.1097/HJH.0000000000001481.PMID:28704262.
19. Katz S., Arish N., Rokach, Zaltzman A., Marcus E.-L., The effect of body position on pulmonary function: a systematic review. BMC Pulm Med. 2018; 18: 159 (). DOI: 10.1186/s12890-018-0723-4. PMID: 3030505
20. Mizumi S.,Goda A., Takeuchi K., Kikuchi H., Inami T., Soejima K, Satoh T. Effects of body position during cardiopulmonary exercise testing with right heart catheterization Physiol Rep. 2018; 6 (23): e13945. DOI: 10.14814/phy2.13945. DOI: 10.14814/phy2.13945 PMID: 30548425
21. Cohen J., Pignanelli C., Burr J. The Effect of Body Position on Measures of Arterial Stiffness in Humans J Vasc Res. 2020; 57 (3): 143-151. DOI: 10.1159/000506351. Epub 2020 Apr 1. DOI: 10.1159/000506351 PMID: 32235116
22. Ye Q., Wang B., Mao J.. The pathogenesis and treatment of the 'Cytokine Storm’ in COVID-19. J Infect. 2020; 80 (6): 607-613. DOI:10.1016/j.jinf.2020.03.037 PMID: 32283152.
23. ZhangX., Li S., Niu S. ACE2 and COVID-19 and the resulting ARDS Postgrad Med J. 2020; 96 (1137): 403-407. Epub 2020 Jun 10. DOI: 10.1136/postgradmedj-2020-137935.
Review
For citations:
Shilin D.S., Shapovalov K.G. Hemodynamic Parameters After Prone Positioning of COVID-19 Patients. General Reanimatology. 2021;17(3):32-41. https://doi.org/10.15360/1813-9779-2021-3-32-41