Meglumine Sodium Succinate to Correct COVID-19-Associated Coagulopathy: the Feasibility Study
https://doi.org/10.15360/1813-9779-2021-3-50-64
Abstract
Aim of the study: to evaluate the effect of meglumine sodium succinate (MSS) on the efficacy of anticoagulant therapy in patients with severe COVID-19 infection complicated by bilateral community-acquired pneumonia.
Materials and methods. Overall efficacy of treatment was analyzed in 12 patients hospitalized to ICU with the diagnosis of severe confirmed COVID-19 coronavirus infection (U07.1) complicated by bilateral multisegmental pneumonia. All patients received prophylactic anticoagulation with unfractionated heparin. The patients were divided into two groups: 7 of them received a multi-electrolyte solution containing MSS 5 ml/kg daily for the entire ICU stay (3-10 days) as a part of therapy; 5 patients received a similar volume of a conventional multi-electrolyte solution containing no metabolically active substrates and comprised a control group. Coagulation parameters were measured in arterial and venous blood of all patients at the following stages: 1) upon admission to the ICU; 2) 2-4 hours after the first dose of heparin; 3) 8-12 hours after the second dose of heparin; 4) 24 hours after the beginning of intensive therapy. On the 28th day of follow-up, mortality, duration of ICU stay, and incidence of thrombotic complications in the groups were evaluated. Nonparametric methods of statistical analysis were used to assess intragroup changes and intergroup differences.
Results. The group of patients administered with MSS had significantly fewer thromboembolic events during 28 days of treatment and shorter ICU stay. These patients responded faster to anticoagulant therapy, which was suggested by more distinct changes in coagulation parameters, i.e. increased APTT, persisting viable thrombocyte population, reduced D-dimer and fibrinogen levels.
Conclusion. The metabolic action of succinate possibly increases endothelial resistance to damaging factors and reduces its procoagulant activity. The hypothesis requires testing in a larger clinical study with a design including laboratory evaluation of the efficacy of varying doses of the studied drug as well as aiming at elucidation of the mechanisms of its effect on specific pro- and anticoagulation system components.
About the Authors
I. S. SimutisRussian Federation
Ionas S. Simutis
10/1 Minin and Pozharsky Square, 603005 Nizhny Novgorod
G. A. Boyarinov
Russian Federation
Gennady A. Boyarinov
10/1 Minin and Pozharsky Square, 603005 Nizhny Novgorod
M. Yu. Yuriev
Russian Federation
Mikhail Yu. Yuriev
85 A Berezovskaya Str., 603157 Nizhny Novgorod
D. S. Petrovsky
Russian Federation
Dmitry S. Petrovsky
85 A Berezovskaya Str., 603157 Nizhny Novgorod
A. L. Kovalenko
Russian Federation
Alexey L. Kovalenko
1 Bekhtereva Str., 192019 St. Petersburg
K. V. Sapozhnikov
Russian Federation
Kirill V. Sapozhnikov
4 Pesochnaya nab, 197376 St. Petersburg
References
1. Nardelli P, Landoni G. COVID-19-Related Thromboinflammatory Status: MicroCLOTS and Beyond (Editorial). Obshchaya Reanimato-logiya=GeneralReanimatology. 2020; 16 (3): 14-15 [In Russ.]. DOI: 10.15360/1813-9779-2020-3-0-2
2. Spiezia L., Boscolo A., Poletto F., Cerruti L., Tiberio I., Campello E., Na-valesi P., Simioni P. COVID-19-Related Severe Hypercoagulability in Patients Admitted to Intensive Care Unit for Acute Respiratory Failure. Thromb Haemost. 2020; 120 (6): 998-1000. DOI: 10.1055/s-0040-1710018.
3. Lin J., Yan H., Chen H. COVID-19 and coagulation dysfunction in adults: A systematic review and meta-analysis. J Med Virol. 2020; 1-11. DOI: 10.1002/jmv.26346
4. Frazer J.S., Tyrynis Everden A.J. Emerging patterns of hypercoagulability associated with critical COVID-19: A review. Trends in Anaesthesia and Critical Care. 2020; 34: 4-13. DOI: 10.1016/j.tacc.2020.07.004
5. Yang Y., Shen C., Li J., Yuan J., Yang M., Wang F, Li G., Li Y., Xing L., Peng L. , Wei J., Cao M., ZhengH., Wu W., Zou R., Li D., Xu Z., WangH., Zhang M. , ZhangZ., Liu L., Liu Y. Exuberant elevation of IP-10, MCP-3 and IL-1ra during SARS-CoV-2 infection is associated with disease severity and fatal outcome. Preprint from medRxiv. 2020. DOI: 10.1101/2020.03.02.20029975
6. Gong J., Dong H., Xia S., Huang Y., Wang D., Zhao Y., Liu W., Tu Sh., ZhangM., Wang Q., Lu F. Correlation analysis between disease severity and inflammation-related parameters in patients with COVID-19 pneumonia. medRxiv. 2020. DOI: 10.1101/2020.02.25.20025643
7. Merad M., Martin J.C. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat. Rev. Immunol. 2020; 20: 355-362.
8. Varga Z., Flammer A.J., Steiger P, Haberecker M., Andermatt R., Zin-kernagel A.S., Mehra M.R., Schuepbach R.A., Ruschitzka F, Moch H. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020; 395 (10234): 1417-1418. DOI: 10.1016/S0140-6736(20)30937-5.
9. Helms J., Tacquard C., Severac F., Leonard-Lorant I., Ohana M., De-labranche X., Merdji H., Clere-Jehl R., Schenck M., Fagot Gandet F, Fafi-Kremer S., Castelain V., Schneider F., Grunebaum L., Angles-Cano E., Sattler L., Mertes PM., Meziani F; CRICS TRIGGERSEP Group (Clinical Research in Intensive Care and Sepsis Trial Group for Global Evaluation and Research in Sepsis). High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. 2020; 46 (6): 1089-1098. DOI: 10.1007/s00134-020-06062-x.
10. EscherR., BreakeyN., LammleB. Severe COVID-19 infection associated with endothelial activation. Thromb. Res. 2020; 190: 62.
11. McGonagle D., SharifK., O’Regan A., Bridgewood C. The Role of Cytokines including Interleukin-6 in COVID-19 induced Pneumonia and Macrophage Activation Syndrome-Like Disease. Autoimmun Rev. 2020; 19 (6): 102537. DOI: 10.1016/j.autrev.2020.102537.
12. Liao M., Liu Y., Yuan J. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med. 2020; 26: 842-844. DOI: 10.1038/s41591-020-0901-9Y
13. Zhou Y., Fu B., ZhengX., WangD., Zhao C., qi Y., Sun R., Tian Z., Xu X., Wei H. Pathogenic T cells and inflammatory monocytes incite inflammatory storm in severe COVID-19 patients. Natl Sci Rev. 2020 Mar 13: nwaa041. DOI: 10.1093/nsr/nwaa041. PMCID: PMC7108005.
14. Wen W., Su W., TangH., Le W., ZhangX., Zheng Y., Liu X., Xie L., Li J., Ye J., Dong L., Cui X., Miao Y., Wang D., Dong J., Xiao C., Chen W., Wang H. Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing. Cell Discov. 2020. 4; 6: 31. DOI: 10.1038/s41421-020-0168-9.
15. Liu J., Liu Y., Xiang P, Pu L., Xiong H., Li C., Zhang M., Tan J., Xu Y., Song R., Song M., Wang L., Zhang W., Han B., YangL., WangX., Zhou G., Zhang T., Li B., Wang Y., Chen Z., WangX. Neutrophil-to-lympho-cyte ratio predicts critical illness patients with 2019 coronavirus disease in the early stage. J Transl Med. 2020; 20; 18 (1): 206. DOI: 10.1186/s12967-020-02374-0.
16. Zuo Y., Yalavarthi S., Shi H., Gockman K., Zuo M., Madison J.A., Blair C., Weber A., Barnes B.J., Egeblad M, Woods RJ, Kanthi Y, Knight JS. Neutrophil extracellular traps in COVID-19. JCI Insight. 2020; 4; 5 (11): e138999. DOI: 10.1172/jci.insight.138999
17. Barnes B.J., Adrover J.M., Baxter-Stoltzfus A., Borczuk A., Cools-Lar-tigue J., Crawford J.M., Dafiler-Plenker J., Guerci P., Huynh C., Knight J.S., Loda M., Looney M.R., McAllister F, Rayes R., Renaud S., Rousseau S. , Salvatore S., Schwartz R.E., Spicer J.D., Yost C.C., Weber A., Zuo Y., Egeblad M. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp Med. 2020; 1; 217 (6): e20200652. DOI: 10.1084/jem.20200652
18. Song W.-C., FitzGerald G.A. COVID-19, microangiopathy, hemostatic activation, and complement. The Journal of Clinical Investigation. 2020; 3; 130 (8): 3950-3953. DOI: 10.1172/JCI140183 In press.
19. Yao X.H., Li T.Y., He Z.C., Ping Y.F, Liu H.W., Yu S.C., Mou H.M., Wang L.H., ZhangH.R., Fu W.J., Luo T., Liu F, Guo Q.N., Chen C., Xiao H.L., Guo H.T., Lin S., Xiang D.F, Shi Y., Pan G.Q., Li Q.R., Huang X., Cui Y., LiuX.Z., TangW., PanP.F., HuangX.Q., DingY.Q., BianX.W. [A pathological report of three COVID-19 cases by minimal invasive autopsies]. Zhonghua Bing Li Xue Za Zhi. 2020; 8; 49 (5): 411-417. Chinese. DOI: 10.3760/cma.j.cn112151-20200312-00193
20. Zhang H., Baker A. Recombinant human ACE2: acing out angiotensin II in ARDS therapy. Crit Care. 2017; 13; 21 (1): 305. DOI: 10.1186/s13054-017-1882-z.
21. Zores F, Rebeaud M.E. COVID and the Renin-Angiotensin System: Are Hypertension or Its Treatments Deleterious? Front Cardiovasc Med. 2020; 23 (7): 71. DOI: 10.3389/fcvm.2020.00071
22. Bautista-Vargas M., Bonilla-Abadia F, Canas C.A. Potential role for tissue factor in the pathogenesis of hypercoagulability associated with in COVID-19. J Thromb Thrombolysis. 2020: 1-5. DOI: 10.1007/s11239-020-02172-x
23. DiNicolantonio J.J., McCarty M. Thrombotic complications of COVID-19 may reflect an upregulation of endothelial tissue factor expression that is contingent on activation of endosomal NADPH oxidase. Open Heart 2020; 7: 001337. DOI: 10.1136/openhrt-2020-001337
24. Tang N., Bai H., Chen X., Gong J., Li D., Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020; 18 (5): 1094-1099. DOI: 10.1111/jth.14817
25. Interim guidelines. Prevention, diagnosis and treatment of new co-ronavirus infection (COVID-19). Version 9 (26.10.2020) [In Russ.].
26. Abou-Ismail M.Y., Diamond A., Kapoor S., Arafah Y., Nayak L. The hy-percoagulable state in COVID-19: Incidence, pathophysiology, and management [published online ahead of print, 2020 Jun 20]. Thromb Res. 2020; 194: 101-115. DOI: 10.1016/j.thromres.2020.06.029
27. Khavkina D. A., Ruzhentsova T. A., Chukhlyaev P. V., Garbuzov A. A., Shushakova E. K. The role of detoxification and antioxidant therapy in the treatment of COVID-19: theory and practice. COVID19-PRE-PRINTS.MICROBE.RU [In Russ.]. DOI: 10.21055/preprints-3111722
28. White D., MacDonald S., Bull T., Hayman M., de Monteverde-Robb R., Sapsford D., Lavinio A., Varley J., Johnston A., Besser M., Thomas W. Heparin resistance in COVID-19 patients in the intensive care unit. J Thromb Thrombolysis. 2020; 50 (2): 287-291. DOI: 10.1007/s11239-020-02145-0
29. BoyarinovG.A., DeryuginaA.V, YakovlevaE.I.,ZaitsevR.R., Shumilova A.V, Bugrova M.L., Boyarinova L.V., Filippenko E.S., Solovyova O.D. Pharmacological correction of microcirculation in rats with traumatic brain injury. Tsitologiya. 2016; 58 (8): 610-617 [In Russ.]
30. VoronkovA.V., Pozdnyakov D.I. Comparative evaluation of the effect of mexidol, ticotic acid and the compound ATACL (4-hydroxy-3,5-ditretbutyl cinnamic acid) on the vasodilating function of the endothelium of the rat brain vessels in case of its ischemic damage. Eksperimental 'naia i Klinicheskaia Farmakologiia. 2018; 81 (2): 21-24 [In Russ.]. DOI:10.30906/0869-2092-2018-81-2-21-24
31. Konovalova E. A., Chernomortseva E.S., Pokrovsky M.V.. Pokrovskaya T. G., DudinaE.N. LopatinD.V., Denisyuk T. A., KotelnikovaL.V., Lesovaya Zh.C. Correction of endothelial dysfunction with a combination of l-norvaline and mexidol. Nauchnye vedomosti Seriya Meditsina. Farmatsiya. 2012; 4 (123): 175-182 [In Russ.]
32. Novikova L.B., Sharafutdinova L.R., Sharapova K.M. The use of me-xidol in the acute period of ischemic stroke. Zhurnal nevrologii i pskhiatrii im. S.S.Korsakova. 2013; 9 (Т.113): 83-85 [In Russ.]
33. SkorometsAA.,NikitinaV.V.BaryshevB.A.Effect of reamberin on vascular-platelet and plasma-coagulation time of homeostasis in blood plasma in donors in vitro. Vestnik SPbGMA im I.I.Mechnikova. 2003; 4 (4): 132-136 [In Russ.]
34. TangX., Liu J., Dong W., Li P, Li L., Lin C., Zheng Y., Hou J., Li D. The Cardioprotective Effects of Citric Acid and L-Malic Acid on myocardial Ischemia/Reperfusion Injury Hindawi Publishing Corporation Evidence-Based Complementary and Alternative Medicine 2013, Article ID 820695, 11 pages DOI: 10.1155/2013/820695 Sovremennye problemy nauki i obrazovaniya.
35. TolkachA.B., Dolgikh V.T., Moroz VV., KireevaN.V., NoskovaN.M. The use of reamberin for the correction of hemostatic disorders in abdominal sepsis. Ural’skij meditsinskij zhurnal. 2012; 9 (101): 115-120 [In Russ.]
36. Shvedova N.M., Mikhailova E.V. Hemorheological disorders in ep-stein-barr viral mononucleosis in children. correction methods. Eks-perimental’naya i klinicheskaya farmakologiya. 2011; 74 (4): 18-23 [In Russ.]
37. MikhailovaE.V., Chudakova T.K. Influenza in children: clinic, hematological indicators of intoxication, detoxification therapy. Eksperi-mental’naya i klinicheskayafarmakologiya. 2015; 5: 33-36 [In Russ.].
38. Fei H., Berliner JA., Parhami F., Drake TA. Regulation of endothelial cell tissue factor expression by minimally oxidized LDL and lipopo-lysaccharide. Arterioscler Thromb. 1993; 13 (11): 1711-1717. DOI: 10.1161/01.atv.13.11.1711
39. Matsumoto V, Kawai Y., Watanabe K., Sakai K., Murata M., Handa M., Nakamura S., Ikeda Y. Fluid shear stress attenuates tumor necrosis factor -alpha-induced tissue factor expression in cultured human endothelial cells. Blood. 1998; 91 (11): 4164-4172. DOI: 10.1182/blood.V91.11.4164
40. Skipetrov V.P, Menkova M.D. The value of tissue hemocoagulating substances in lung inflammation. Klinicheskaya meditsina. 1977; 3: 113-119 [In Russ.].
41. Skipetrov VP., Vlasov A.P., Golyshenkov S.P. Coagulation-lytic system of tissues and thrombohemorrhagic syndrome in surgery. Monograph. Saransk: Editorial house «Krasniy Oktyabr’.». 1999 [In Russ.].
42. Baranich A.I., Sychev A.A., Savin 1.А., Polupan A.A., Oshorov A.V., Potapov A.A. Hemostasis Disturbances in Patients in the Acute Period of Isolated Traumatic Brain Injury (Review). Obshchaya Reanimato-logiya=GeneralReanimatology. 2018; 14 (5): 85-95 [In Russ.]. DOI: 10.15360/1813-9779-2018-5-85-95
43. Reshetnyak VI., Zhuravel S.V, Kuznetsova N.K., Pisarev УМ., Klychni-kovaE.V, Syutkin VM., Reshetnyak ТЖ. The System of Blood Coagulation in Normal and in Liver Transplantation (Review). Obshchaya Reanimatologiya=General Reanimatology. 2018; 14 (5): 58-84 [In Russ.]. DOI: 10.15360/1813-9779-2018-5-58-84
44. Mikhin VP, Grigorieva T.A., Tsukanova YuA. Vascular endothelial dysfunction in patients with arterial hypertension on the background of diabetes mellitus and the possibility of its correction with mexicor. Farmateka. Kardiologiya/nevrologiya. 2008; 169 (15): 92-97 [In Russ.].
45. TrofimovA.O., Kalentyev G.V, Voennov O.V, YuryevM.Yu., Trofimova S.Yu., Agarkova D.I. Disorders of cerebral microcirculation in craniocerebral trauma. Regionarnoe krovoobrashchenie i mikrotsirkulyat-siya. 2015; 14 (2): 4-15 [In Russ.]
46. BoyarinovGA.,BoyarinovaL.V.,DeryuginaA.V,Solov’evaO.D.,Zaytsev R.R., Voyennov O.V., MoshninaE.V., ShumilovaA.V. Role of Secondary Brain Damage Factors in Activation ofVascularPlatelet Hemostasis in Traumatic Brain Injury. Obshchaya Reanimatologiya=General Reani-matology. 2016; 12 (5): 42-51. [In Russ.]. DOI: 10.15360/1813-9779-2016-5-42-51
47. Boyarinov G.A., DeryuginaA.V., ZaytsevR.R., BoyarinovaL.V., Yakovleva E.I., Soloveva O.D., Nikolskiy VO., Galkina M.V., Martusevich AA. Morphological Changes in Myocardial Blood Microvessels in Experimental Craniocerebral Injury. Obshchaya Reanimatologiya=General Reanimatology. 2016; 12 (2): 20-29 [In Russ.]. DOI: 10.15360/1813-9779-2016-2-20-29
48. Orlov Yu. P, Lukach VN., Filippov S. I., Glushchenko A.VEfficiency of succinic acid infusion solutions in lowvolume surgery. Eksperimental’naya i klinicheskaya farmakologiya. 2013; 76 (5): 23-26 [In Russ.]. DOI: 10.30906/0869-2092-2013-76-5-23-26
49. Protti A., Carre J., Frost M.T., Taylor V., Stidwill R., Rudiger A., Singer M. Succinate recovers mitochondrial oxygen consumption in septic rat skeletal muscle. Crit Care Med. 2007; 35 (9): 2150-5. DOI: 10.1097/01.ccm.0000281448.00095.4d
Review
For citations:
Simutis I.S., Boyarinov G.A., Yuriev M.Yu., Petrovsky D.S., Kovalenko A.L., Sapozhnikov K.V. Meglumine Sodium Succinate to Correct COVID-19-Associated Coagulopathy: the Feasibility Study. General Reanimatology. 2021;17(3):50-64. https://doi.org/10.15360/1813-9779-2021-3-50-64