Comparative Characterization of Candidate Molecular Markers in Ischemic and Hemorrhagic Stroke
https://doi.org/10.15360/1813-9779-2021-5-23-34
Abstract
According to epidemiological studies, the leading cause of morbidity, disability and mortality are cerebrovascular diseases, in particular ischemic and hemorrhagic strokes. In recent years considerable attention has been given to the study of molecular markers of ischemic and hemorrhagic strokes. These studies are relevant because brain-specific protein biomarkers of neurons and glial cells can provide valuable and timely diagnostic information necessary for clinical decision-making.
The aim of the study was to reveal the differences in the serum level of molecular markers in acute, subacute and early recovery periods of ischemic and hemorrhagic strokes.
Material and methods. The study included 59 patients. Twenty patients were diagnosed with hemorrhagic stroke and 39 had ischemic stroke. The control group included 20 volunteers. Serum levels of molecular CNS markers were determined in acute, subacute, and early recovery stages of stroke. The serum levels of CNS molecular markers of patients with ischemic and hemorrhagic stroke was measured quantitatively by enzyme immunoassay. Statistical analysis was performed by nonparametric Mann-Whitney method.
Results. The level of brain-derived neurotrophic factor (BDNF) in the control volunteers was 574.5 [455.5; 615] pg/ml. Significant differences were found for acute and subacute periods of hemorrhagic stroke: it was 674 [560; 749] pg/ml (P=0.003) and 664 [616; 762] pg/ml (P=0.0001).
The level of neuron-specific enolase was significantly increased in all periods of the study: it was 4.15 [3.53; 4.8] ng/ml in the control group, 5.4 [4.4; 6.4] ng/ml in acute period of ischemic stroke (P<0.001), 5.4 [4.4; 6.4] ng/ml in early recovery period of ischemic stroke (P=0.001), 5.1 [4.6; 6.4] ng/ml in acute period of hemorrhagic stroke (P=0.014), 664 [616; 762] ng/ml in subacute period of hemorrhagic stroke (P=0.003).
In the control group, the serum S-100 protein level was 4.5 [3.8; 5.4] ng/ml. In the acute and early recovery periods of ischemic stroke, S-100 protein level has significantly fallen down to 4.1 [3.4; 4.6] ng/ml (P<0.031) and 3.9 [3.4; 6] ng/ml (P=0.014), respectively. Glial-cell derived neurotrophic factor level was 1.98 [1.64; 2.1] ng/ml in the controls and increased up to 2.4 [2.2; 5] ng/ml (P=0.002) in the acute period and 2.4 [2.3; 2.6] ng/ml (P<0.001) in the subacute period of hemorrhagic stroke.
The vascular endothelial growth factor receptor-1 (VEGFR-1) was significantly lower in the subacute period of hemorrhagic stroke: 485 [211; 945] pg/ml in the subacute period vs 903.5 [626; 1115] pg/ml in the controls (P=0.001).
Conclusion. We found differences in the serum level of molecular markers in patients with ischemic and hemorrhagic strokes. In the acute period, early recovery period of ischemic stroke, and subacute period of hemorrhagic stroke, there was an increase in the serum level of neuron-specific enolase. The level of brain-derived neurotrophic factor increased significantly in the acute and subacute periods of hemorrhagic stroke. In the acute and early recovery periods of ischemic stroke, the level of S-100 protein decreased. The level of glial cell-derived neurotrophic factor increased in the acute and subacute periods of hemorrhagic stroke. In the subacute period of hemorrhagic stroke, the level of endothelial growth factor receptor-1 significantly decreased. Moreover, there was significant difference between values of this parameter in the subacute period of hemorrhagic stroke and in the early recovery period of ischemic stroke.
About the Authors
A. M. GolubevRussian Federation
Arkady M. Golubev.
25 Petrovka Str., Bldg. 2, 107031 Moscow.
A. V. Grechko
Russian Federation
Andrey V. Grechko.
25 Petrovka Str., Bldg. 2, 107031 Moscow.
V. E. Zakharchenko
Russian Federation
Vladislav E. Zakharchenko.
25 Petrovka Str., Bldg. 2, 107031 Moscow.
M. M. Kanarsky
Russian Federation
Mikhail M. Kanarsky.
25 Petrovka Str., Bldg. 2, 107031 Moscow.
M. V. Petrova
Russian Federation
Marina V. Petrova.
25 Petrovka Str., Bldg. 2, 107031 Moscow.
I. V. Borisov
Russian Federation
Ilya V. Borisov.
25 Petrovka Str., Bldg. 2, 107031 Moscow.
References
1. Hall E. W., Vaughan A. S., Ritchey M. D., Schieb L., Casper M. Stagnating National Declines in Stroke Mortality Mask Widespread County Level Increases, 2010-2016. Stroke. 2019; 50 (12): 3355-3359. DOI: 10.1161/STRKEAHA.119.026695
2. Morris S., Ramsay A., Boaden R.J., Hunter R.M., McKevitt C., Paley L., Perry C., Rudd A.G., Turner S.J., Tyrrell P.J., Wolfe C., Fulop N.J. Impact and sustainability of centralising acute stroke services in English metropolitan areas: retrospective analysis of hospital episode statistics and stroke national audit data. BMJ (Clinical research ed.). 2019; 364: l1. DOI: 10.1136/bmj.l1
3. Lekander I., Willers C., Ekstrand E., von Euler M., Fagervall-Yttling B., Henricson L., Kostulas K., Lilja M., Sunnerhagen K.S., Teichert J., Pes-sah-Rasmussen H. Hospital comparison of stroke care in Sweden: a register-based study. BMJ open. 2017; 7 (9): e015244. DOI: 10.1136/bmjopen-2016-015244
4. Li L., Scott C.A., Rothwell P.M., Oxford Vascular Study. Trends in Stroke Incidence in High-Income Countries in the 21st Century: Population-Based Study and Systematic Review. Stroke. 2020; 51 (5): 13721380. DOI: 10.1161/STROKEAHA.119.028484
5. Kim J.Y., Kang K., Kang J., Koo J., Kim D.H., Kim B.J., Kim W.J., Kim E.G., Kim J.G., Kim J.M., Kim J.T., Kim C., Nah H.W., Park K.Y., Park M.S., Park J.M., Park J.H., Park T.H., Park H.K., Seo W.K., Bae H.J. Executive Summary of Stroke Statistics in Korea 2018: A Report from the Epidemiology Research Council of the Korean Stroke Society. Journal of stroke. 2019; 21 (1): 42-59. DOI: 10.5853/jos.2018.03125
6. Glushakova O.Y., Glushakov A.V., Miller E.R., Valadka A.B., Hayes R.L. Biomarkers for acute diagnosis and management of stroke in ne-urointensive care units. Brain circulation. 2016; 2 (1), 28-47. DOI: 10.4103/2394-8108.178546
7. Eng L.F., Ghirnikar R.S., Lee Y.L. Glial fibrillary acidic protein: GFAP-thirty-one years (1969-2000). Neurochemical research. 2000; 25 (9-10): 1439-1451. DOI: 10.1023/a: 1007677003387
8. Missler У., Wiesmann M., Wittmann G., Magerkurth O., Hagenstrom H. Measurement of glial fibrillary acidic protein in human blood: analytical method and preliminary clinical results. Clinical chemistry. 1999; 45 (1): 138-141.
9. Brunkhorst R., Pfeilschifter W., Foerch C. Astroglial proteins as diagnostic markers of acute intracerebral hemorrhage-pathophysiological background and clinical findings. Translational stroke research. 2010; 1 (4): 246-251. DOI: 10.1007/s12975-010-0040-6
10. Kamtchum-Tatuene J., Jickling G.C. Blood Biomarkers for Stroke Diagnosis and Management. Neuromolecular medicine. 2019; 21 (4): 344-368. DOI: 10.1007/s12017-019-08530-0
11. Luo W., Liu T., Li S., Wen H., Zhou F., Zafonte R., Luo X., Xu M., Black-Schaffer R., Wood L.J., Wang Y., Wang Q.M. The Serum BDNF Level Offers Minimum Predictive Value for Motor Function Recovery After Stroke. Translational stroke research. 2019; 10 (4): 342-351. DOI: 10.1007/s12975-018-0648-5
12. Chaturvedi P., Singh A.K., Tiwari V., Thacker A.K. Brain-derived neurotrophic factor levels in acute stroke and its clinical implications. Brain circulation. 2020; 6 (3): 185-190. DOI: 10.4103/bc.bc_23_20
13. Koroleva E.S., Tolmachev I.V., Alifirova V.M., Boiko A.S., Levchuk L.A., Loonen A., Ivanova S.A. Serum BDNF's Role as a Biomarker for Motor Training in the Context of AR-Based Rehabilitation after Ischemic Stroke. Brain sciences. 2020; 10 (9): 623. DOI: 10.3390/brainsci10090623
14. Lasek-Bal A., Jędrzejowska-Szypułka H., Różycka J., Bal W., Holecki M., Duława J., Lewin-Kowalik J. Low Concentration of BDNF in the Acute Phase of Ischemic Stroke as a Factor in Poor Prognosis in Terms of Functional Status of Patients. Medical science monitor: international medical journal of experimental and clinical research. 2015; 21: 3900-3905. DOI; 10.12659/msm.895358
15. Li K., Jia J., Wang Z., Zhang S. Elevated Serum Levels of NSE and S-100p Correlate with Increased Risk of Acute Cerebral Infarction in Asian Populations. Medical science monitor: international medical journal of experimental and clinical research. 2015; 21: 1879-1888. DOI: 10.12659/msm.893615
16. Onatsu J., Vanninen R., Jakala P., Mustonen P., Pulkki K., Korhonen M., Hedman M., Hoglund K., Blennow K., Zetterberg H., Herukka S.K., Taina M. Tau, S100B and NSE as Blood Biomarkers in Acute Cerebrovascular Events. In vivo (Athens, Greece): 2020; 34 (5): 2577-2586. DOI: 10.21873/invivo.12075
17. Haupt W.F., Chopan G., Sobesky J., Liu W.C., Dohmen C. Prognostic value of somatosensory evoked potentials, neuron-specific enolase, and S100 for short-term outcome in ischemic stroke. Journal of neurophysiology. 2016; 115 (3): 1273-1278. DOI: 10.1152/jn.01012.2015
18. MitroshinaE.V., Mishchenko T.A., Shirokova O.M.,Astrakhanova T.A., Loginova M.M., Epifanova E.A., Babaev A.A., Tarabykin V.S., Vedunova M.V. Intracellular Neuroprotective Mechanisms in Neuron-Glial Networks Mediated by Glial Cell Line-Derived Neurotrophic Factor. Oxidative medicine and cellular longevity. 2019; 2019: 1036907. DOI: 10.1155/2019/1036907
19. Poyhonen S., Er S., Domanskyi A., Airavaara M. Effects of Neurotrophic Factors in Glial Cells in the Central Nervous System: Expression and Properties in Neurodegeneration and Injury. Frontiers in physiology. 2019; 10: 486. DOI: 10.3389/fphys.2019.00486
20. Prodjohardjono A., Vidyanti A.N., Susianti N.A., Sudarmanta-Sutarni S., Setyopranoto I. Higher level of acute serum VEGF and larger infarct volume are more frequently associated with post-stroke cognitive impairment. PloS one. 2020; 15 (10): e0239370. DOI: 10.1371/journal.pone.0239370
21. Shim J.W., Madsen J.R. VEGF Signaling in Neurological Disorders. International journal of molecular sciences. 2018; 19 (1): 275. DOI: 10.3390/ijms19010275
22. Ren L., Wei C., Li K., Lu Z. LncRNA MALAT1 up-regulates VEGF-A and ANGPT2 to promote angiogenesis in brain microvascular endothelial cells against oxygen-glucose deprivation via targetting miR-145. Bioscience reports. 2019; 39 (3): BSR20180226. DOI: 10.1042/BSR20180226 (Retraction published Biosci Rep. 2020 Jul 31; 40 (7).
23. Egervari K., Potter G., Guzman-Hernandez M.L., Salmon P., Soto-Ribeiro M., Kastberger B., Balla T., Wehrle-Haller B., Kiss J.Z. Astrocytes spatially restrict VEGF signaling by polarized secretion and incorporation of VEGF into the actively assembling extracellular matrix. Glia. 2016; 64 (3): 440-456. DOI: 10.1002/glia.22939
24. Matsuo R., Ago T., Kamouchi M., Kuroda J., Kuwashiro T., Hata J., Sugimori,H., Fukuda K., Gotoh S., Makihara N., Fukuhara M., Awano H., Isomura T., Suzuki K., Yasaka M., Okada Y., Kiyohara Y., Kitazono T. Clinical significance of plasma VEGF value in ischemic stroke — research for biomarkers in ischemic stroke (REBIOS) study. BMC neurology. 2013; 13: 32. DOI: 10.1186/1471-2377-13-32
25. Wittko-Schneider I.M., Schneider F.T., Plate K.H. Brain homeostasis: VEGF receptor 1 and 2 — two unequal brothers in mind. Cell Mol Life Sci. 2013; 70 (10): 1705-1725. DOI: 10.1007/s00018-013-1279-3. PMCID: PMC3632714
26. Marginean I.C., Stanca D.M., Vacaras V., Soritau O., Margiean M., Muresanu D.F. Plasmatic markers in hemorrhagic stroke. Journal of medicine and life. 2011; 4 (2): 148-150.
27. Miao Y., Liao J.K. Potential serum biomarkers in the pathophysiological processes of stroke. Expert review of neurotherapeutics. 2014; 14 (2): 173-185. DOI: 10.1586/14737175.2014.875471
28. Jickling G.C., Sharp F.R. Biomarker panels in ischemic stroke. Stroke. 2015; 46 (3): 915-920. DOI: 10.1161/STROKEAHA.114.005604
29. Simpkins A. N., Janowski M., Oz H. S., Roberts J., Bix G., Dore S., Stowe A.M. Biomarker Application for Precision Medicine in Stroke. Translational stroke research. 2020; 11 (4), 615-627. DOI: 10.1007/s12975-019-00762-3
Review
For citations:
Golubev A.M., Grechko A.V., Zakharchenko V.E., Kanarsky M.M., Petrova M.V., Borisov I.V. Comparative Characterization of Candidate Molecular Markers in Ischemic and Hemorrhagic Stroke. General Reanimatology. 2021;17(5):23-34. https://doi.org/10.15360/1813-9779-2021-5-23-34