Effect of Lithium Chloride Concentration on Its Neuroprotective Properties in Ischemic Stroke in Rats
https://doi.org/10.15360/1813-9779-2021-5-101-110
Abstract
Currently, a number of experimental studies have demonstrated compelling evidence of neuro-, cardio-, and nephroprotective properties of medications containing lithium chloride.
Aim of the study. To evaluate the effect of various concentrations of lithium chloride on ischemic stroke volume and perifocal edema in rats after cerebral ischemia.
Material and methods. Male mongrel rats weighing 315±13.5 g were used in the study. The focal ischemia model according to Longa et al. was employed. The animals (n=35) were divided into 5 groups: sham-operated, control group (ischemic stroke model with NaCl 0.9% administration) and three groups who received lithium chloride in different concentrations (4.2 mg/kg, 21 mg/kg and 63 mg/kg). Lithium chloride was administered immediately after cessation of middle cerebral artery occlusion and then every 24 h until euthanasia. To assess the degree of brain damage, the animals underwent magnetic resonance imaging (MRI) on day 2, and brain sections stained with 2,3,5-triphenyltetrazolium chloride were evaluated after euthanasia on day 7. Intergroup differences were assessed using the Mann-Whitney criterion.
Results. According to MRI data, lithium chloride at a dose of 4.2 mg/kg had no significant effect on ischemic stroke volume and perifocal edema versus the control group on day 2 (P=0.9). With lithium chloride at 21 mg/kg, stroke volume and perifocal edema were significantly lower than in the control group (by 25%, P=0.04 and 18%, P=0.03, respectively). Lithium chloride at a dose of 63 mg/kg was more likely to reduce stroke volume (by 45%, P=0.004) and perifocal edema (by 35%, P=0.007). When determining lesion volume on day 7, the data were comparable to those obtained on day 2. With the 21 mg/kg dose, stroke volume was 20% lower than in the control group (P=0.04). Lithium chloride, 63 mg/kg, reduced stroke volume by 40% (P=0.004).
Conclusion. Lithium chloride dose affects necrotic focus formation and manifestations of perifocal cerebral edema after middle cerebral artery occlusion. The maximum reduction in the volume of ischemic stroke and perifocal edema was observed when the 63 mg/kg dose was used.
About the Authors
R. A. CherpakovRussian Federation
Rostislav A. Cherpakov.
25 Petrovka Str., Bldg. 2, 107031 Moscow.
O. A. Grebenchikov
Russian Federation
Oleg A. Grebenchikov.
25 Petrovka Str., Bldg. 2, 107031 Moscow.
References
1. Thrift A.G., Thayabaranathan T., Howard G., Howard V.J., Rothwell P.M., Feigin V.L., Norrving B., Donnan G.A., Cadilhac D.A. Global stroke statistics. Int J Stroke. 2017; 12 (1): 13-32. DOI: 10.1177/1747493016676285 PMID: 27794138
2. Cai W., Mueller C., Li Y.J., Shen W.D., Stewart R. Post stroke depression and risk of stroke recurrence and mortality: A systematic review and meta-analysis. Ageing Res Rev. 2019; 50: 102-109. DOI: 10.1016/j.arr.2019.01.013 PMID: 30711712
3. Parfenov A.L., Petrova M.V., Pichugina I.M., Luginina E.V. Comorbidity Development in Patients with Severe Brain Injury Resulting in Chronic Critical Condition (Review). Obshchaya Reanimatologiya=General Reanimatology. 2020; 16 (4): 72-89 [In Russ.]. DOI 10.15360/1813-9779-2020-4-72-89
4. Hall E.W., Vaughan A.S., Ritchey M.D., Schieb L., Casper M. Stagnating National Declines in Stroke Mortality Mask Widespread County-Level Increases, 2010-2016. Stroke. 2019; 50 (12): 3355-3359. DOI: 10.1161/STROKEAHA.119.026695 PMID: 31694505
5. Sharrief A., Grotta J.C. Stroke in the elderly. Handb Clin Neurol. 2019; 167: 393-418. DOI: 10.1016/B978-0-12-804766-8.00021-2 PMID: 31753145
6. Hathidara M.Y., Saini V., Malik A.M. Stroke in the Young: a Global Update. Curr Neurol Neurosci Rep. 2019; 19 (11): 91. DOI: 10.1007/s11910-019-1004-1 PMID: 31768660
7. Golubev A.M. Models of Ischemic Stroke (Review). Obshchaya Reanimatologiya=General Reanimatology. 2020; 16 (1): 59-72 [In Russ.]. DOI: 10.15360/1813-9779-2020-1-59-72
8. Wu Q., Tang A.J., Zeng L., Niu S.Z., Tian M.M., Jin A.P., Yang H.Y., Chen J.J., Xiao-Ping Z., Shi Y. Prognosis of Neurological Improvement in Inpatient Acute Ischemic Stroke Survivors: A Propensity Score Matching Analysis. J Stroke Cerebrovasc Dis. 2021; 30 (1): 105437. DOI: 10.1016/j.jstrokecerebrovasdis.2020.105437 PMID: 33197800
9. Sennfalt S., Pihlsgard M., Norrving B., Ullberg T., Petersson J. Ischemic stroke patients with prestroke dependency: Characteristics and longterm prognosis. Acta Neurol Scand. 2021; 143 (1): 78-88. DOI: 10.1111/ane.13328 PMID: 32738814
10. Golubev A.M., Grechko A.V., Govorukhina M.A., Zakharchenko V.E., Kuzovlev A.N., Petrova M.V. Molecular Markers of Hemorrhagic Stroke. Obshchaya Reanimatologiya=General Reanimatology. 2019; 15 (5): 11-22 [In Russ.]. DOI 10.15360/1813-9779-2019-5-11-22
11. D'Alton M., Coughlan T., Cogan N., Greene S., McCabe D.J.H., McCarthy A., Murphy S., Walsh R., O'Neill D., Kennelly S., Ryan D., Collins R. Patterns of mortality in modern stroke care. Ir Med J. 2018; 111 (5): 750. PMID: 30489045
12. Baldessarini R.J., Tondo L., Davis P., Pompili M., Goodwin F.K., Hennen J. Decreased risk of suicides and attempts during long-term lithium treatment: a meta-analytic review. Bipolar Disord. 2006; 8: 625-629. DOI: 10.1111/j.1399-5618.2006.00344.x PMID: 17042835
13. Plotnikov E.Y., Silachev D.N., Zorova L.D., Pevzner I.B., Jankauskas S.S., Zorov S.D., Babenko V.A., Skulachev M.V., Zorov D.B. Lithium salts — Simple but magic. Biokhimiya=Biochemistry (Moscow). 2014; 79 (8): 932-943 [In Russ.]. DOI: 10.1134/S0006297914080021 PMID: 25365484
14. Kerr F., Bjedov I., Sofola-Adesakin O. Molecular mechanisms of lithium action: switching the light on multiple targets for dementia using animal models. Frontiers in Molecular Neuroscience. 2018; 11: 297. DOI: 10.3389/fnmol.2018.00297 PMID: 30210290
15. Wang Y., An X., Zhang X., Liu J., Wang J., Yang Z. Lithium chloride ameliorates cognition dysfunction induced by sevoflurane anesthesia in rats. FEBS Open Bio. 2019; 10 (2): 251-258. DOI: 10.1002/2211-5463.12779. PMID: 31867790
16. Ren M., Senatorov V.V., Chen R.W., Chuang D.M. Postinsult treatment with lithium reduces brain damage and facilitates neurological recovery in a rat ischemia/reperfusion model. Proc Natl Acad Sci USA. 2003; 100 (10) : 6210-6215. DOI: 10.1073/pnas.0937423100 PMID: 12732732
17. Yan X.B., Wang S.S., Hou H.L., Ji R., Zhou J.N. Lithium improves the behavioral disorder in rats subjected to transient global cerebral ischemia. Behav Brain Res. 2007; 177 (2): 282-289. DOI: 10.1016/j.bbr.2006.11.021 PMID: 17210190
18. Liu Z., Li R., Jiang C., Zhao S., Li W., Tang X. The neuroprotective effect of lithium chloride on cognitive impairment through glycogen synthasekinase-Зв inhibition in intracerebral hemorrhage rats. Eur. J.Pharmacol. 2018; 840: 50-59. DOI: 10.1016/j.ejphar.2018.10.019 PMID: 30336136
19. McKnight R.F., Adida M., Budge K., Stockton S., Goodwin G.M., Geddes J.R. Lithium toxicity profile: a systematic review and metaanalysis. Lancet. 2012; 379 (9817): 721-728. DOI: 10.1016/S0140-6736(11)61516-X PMID: 22265699
20. Longa E.Z., Weinstein P.R., Carlson S., Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989; 20 (1): 84-91. DOI: 10.1161/01.str.20.1.84 PMID: 2643202
21. Juhaszova M., Zorov D.B., Yaniv Y. Role of glycogen synthase kinase-3beta in cardioprotection. Circ Res. 2009; 104 (11): 1240-1252. DOI: 10.1161/CIRCRESAHA.109.197996 PMID: 19498210
22. Ostrova I.V., Grebenchikov O.A., Golubeva N.V. Neuroprotective Effect of Lithium Chloride in Rat Model of Cardiac Arrest. Obshchaya Reanimatologiya=General Reanimatology. 2019; 15 (3): 73-82 [In Russ.]. DOI: 10.15360/1813-9779-2019-3-73-82
23. Santos C.O., Caeiro L., Ferro J.M., Figueira M.L. Mania and stroke: a systematic review. Cerebrovasc Dis. 2011; 32 (1): 11-21. DOI: 10.1159/000327032 PMID: 21576938
24. Lan C.C., Liu C.C., Lin C.H., Lan T.Y., McInnis M.G., Chan C.H., Lan T.H. A reduced risk of stroke with lithium exposure in bipolar disorder: a population-based retrospective cohort study. Bipolar Disord. 2015; 17: 705-714. DOI: 10.1111/bdi.12336 PMID: 26394555
25. Bosche B., Molcanyi M., Rej S., Doeppner T.R., Obermann M., MUller D.J., Das A., Hescheler J., Macdonald R.L., Noll T., Hartel F.V. Low-Dose Lithium Stabilizes Human Endothelial Barrier by Decreasing MLC Phosphorylation and Universally Augments Cholinergic Vasorelaxation Capacity in a Direct Manner. Front Physiol. 2016; 7: 593. DOI: 10.3389/fphys.2016.00593 PMID: 27999548
26. Mohammadianinejad S.E., Majdinasab N., Sajedi S.A., Abdollahi F., Moqaddam M., Sadr F. The effect of lithium in post-stroke motor recovery: A double-blind, placebo-controlled, randomized clinical trial. Clin. Neuropharmacol. 2014; 37: 73-78. DOI: 10.1097/WNF.0000000000000028 PMID: 24824661
27. Sun Y.R., Herrmann N., Scott C.J.M., Black S.E., Swartz R.H., Hopyan J., LanctotK.L. Lithium carbonate in a poststroke population: exploratory analyses of neuroanatomical and cognitive outcomes. Journal of Clinical Psychopharmacology. 2019; 39 (1): 67-71. DOI: 10.1097/JCP.0000000000000981 PMID: 30566418
28. Grebenchikov O.A., Lobanov A.V., Shayhutdinova E.R., Kuzovlev A.N., Ershov A.V., Likhvantsev V.V. Cardioprotective effect of lithium chloride on a rat model of myocardial infarction. Patologiya krovoobrashcheniya i kardiokhirurgiya. 2019; 23 (2): 43-49. [In Russ.] DOI: 10.21688/1681-3472-2019-2-43-49
29. Cherpakov R.A., Grebenchikov O.A., Plotnikov E.JU., Likhvantsev V.V. Comparison of pharmacological renal preconditioning with dalargin and lithium ions in the model of gentamycin-induced acute renal failure. Anestesiol.i reanimatol. 2015; 60 (1): 58-63 [InRuss.]. PMID: 26027228
Review
For citations:
Cherpakov R.A., Grebenchikov O.A. Effect of Lithium Chloride Concentration on Its Neuroprotective Properties in Ischemic Stroke in Rats. General Reanimatology. 2021;17(5):101-110. https://doi.org/10.15360/1813-9779-2021-5-101-110