Adaptive Phage Therapy in the Treatment of Patients with Recurrent Pneumonia (Pilot Study)
https://doi.org/10.15360/1813-9779-2021-6-4-14
Abstract
Aim. To evaluate the safety and efficacy of the adaptive phage therapy technique in patients with recurrent pneumonia in neurological critical care.
Material and methods. The clinical study included 83 chronically critically ill patients with severe brain damage. The bacteriophage cocktail selected against specific hospital strains was administered by inhalation to 43 patients. The control group included 40 patients who received conventional antimicrobial therapy. The changes in clinical, laboratory and instrumental parameters, levels of biomarkers, microbiological and PCR tests of bronchoalveolar lavage fluid were assessed, including those in the «phage therapy with antibiotics» (n=29) and «phage therapy without antibiotics» (n=14) subgroups.
Results. The groups were comparable in terms of basic parameters (age, sex, diagnosis, organ dysfunction according to APACHE II, use of vasoactive drugs) and the level of airway colonization with antibioticresistant bacterial strains. Good tolerability and absence of clinically significant side effects were observed during inhaled administration of the bacteriophage cocktail. Computed tomography on day 21 showed a significant reduction in lung damage in patients who received bacteriophages. Patients treated with bacteriophages without antibiotics had significantly lower need for mechanical ventilation. The mortality rate on day 28 did not differ significantly and was 4.7% (2/43) in the bacteriophage-treated group vs 5% (2/40) in the control group.
Conclusion. The first experience of using the adaptive phage therapy technique in chronically critically ill patients in neurological intensive care demonstrated the safety of inhalational administration of the bacteriophage cocktail. The efficacy of the technique was confirmed by the treatment results obtained in the phage therapy group, which were not inferior to those in the group with conventional antibiotic therapy, while several clinical and laboratory parameters tended to improve even in patients who received bacteriophages and did not receive antibiotics.
About the Authors
N. V. BeloborodovaRussian Federation
25 Petrovka Str., 2 bldg, 10703 Moscow, Russia
A. V. Grechko
Russian Federation
25 Petrovka Str., 2 bldg, 10703 Moscow, Russia
M. M. Gurkova
Russian Federation
5/23 Nizhny Kiselny lane, bldg 1, 107031 Moscow, Russia
A. Yu. Zurabov
Russian Federation
5/23 Nizhny Kiselny lane, bldg 1, 107031 Moscow, Russia
F. M. Zurabov
Russian Federation
5/23 Nizhny Kiselny lane, bldg 1, 107031 Moscow, Russia
A. N. Kuzovlev
Russian Federation
25 Petrovka Str., 2 bldg, 10703 Moscow, Russia
A. Yu. Megley
Russian Federation
25 Petrovka Str., 2 bldg, 10703 Moscow, Russia
M. V. Petrova
Russian Federation
25 Petrovka Str., 2 bldg, 10703 Moscow, Russia
6 Miklukho-Maklaya Str., 117198 Moscow, Russia
V. M. Popova
Russian Federation
5/23 Nizhny Kiselny lane, bldg 1, 107031 Moscow, Russia
I. V. Redkin
Russian Federation
25 Petrovka Str., 2 bldg, 10703 Moscow, Russia
N. I. Sergeyev
Russian Federation
86 Profsoyuznaya Str., 117997 Moscow, Russia
E. A. Chernevskaya
Russian Federation
25 Petrovka Str., 2 bldg, 10703 Moscow, Russia
M. Yu. Yuriev
Russian Federation
25 Petrovka Str., 2 bldg, 10703 Moscow, Russia
A. A. Yakovlev
Russian Federation
25 Petrovka Str., 2 bldg, 10703 Moscow, Russia
References
1. Rello J., Kalwaje Eshwara V., Conway-Morris A., Lagunes L., Alves J., Alp E., Zhang Z., Mer M., TOTEM Study Investigators. Perceived differences between intensivists and infectious diseases consultants facing antimicrobial resistance: a global cross-sectional survey. Eur J Clin Microbiol Infect Dis. 2019; 38: 1235–1240. DOI: 10.1007/s10096-019-03530-1. PMID: 30900056
2. Kutter E. Phage therapy: Bacteriophages as natural, self-replicating antimicrobials. Practical Handbook of Microbiology, Third Edition. CRC Press; 2015. pp. 883–908.
3. Merabishvili M., Pirnay J-P., Verbeken G., Chanishvili N., Tediashvili M., Lashkhi N., Glonti T., Krylov V., Mast J., Parys L.V., Lavigne R., Volckaert G., Mattheus W., Verween G., De Corte P., Rose T., Jennes S., Zizi M., De Vos D., Vaneechoutte M. Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PLoS One. 2009; 4: e4944. DOI: 10.1371/journal.pone.0004944. PMID: 19300511
4. Перепанова Т.С., Меринов Д.С., Казаченко А.В., Хазан П.Л., Малова Ю.А. Бактериофаготерапия урологической инфекции. Урология. 2020; 106–114.
5. Ooi M.L., Drilling A.J., Morales S., Fong S., Moraitis S., Macias-Valle L., Vreugde S., Psaltis A.J., Wormald P.-J. Safety and Tolerability of Bacteriophage Therapy for Chronic Rhinosinusitis Due to Staphylococcus aureus. JAMA Otolaryngol Head Neck Surg. 2019; 145: 723–729. DOI: 10.1001/jamaoto.2019.1191. PMID: 31219531
6. Liu D., Van Belleghem J.D., de Vries C.R., Burgener E., Chen Q., Manasherob R., Aronson J.R., Amanatullah D.F., Tamma P.D., Suh G.A. The Safety and Toxicity of Phage Therapy: A Review of Animal and Clinical Studies. Viruses. 2021; 13. DOI: 10.3390/v13071268. PMID: 34209836
7. Saperkin N.V., Kovalishena O.V., Kvashnina D.V., Ruizendaal E., Scholten R. Efficiency of phage therapy in humans: systematic review. J Infectology. 2019; 11: 19–30.
8. Cheng M., Liang J., Zhang Y., Hu L., Gong P., Cai R., Zhang L., Zhang H., Ge J., Ji Y., Guo Z., Feng X., Sun Ch., Yang Y., Lei L., Han W., Gu J. The Bacteriophage EF-P29 Efficiently Protects against Lethal Vancomycin-Resistant Enterococcus faecalis and Alleviates Gut Microbiota Imbalance in a Murine Bacteremia Model. Frontiers in Microbiology. 2017. DOI: 10.3389/fmicb.2017.00837. PMID: 2853657.
9. Yang X., Haque A., Matsuzaki S., Matsumoto T., Nakamura S. The Efficacy of Phage Therapy in a Murine Model of Pseudomonas aeruginosa Pneumonia and Sepsis. Frontiers in Microbiology. 2021. DOI: 10.3389/fmicb.2021.682255. PMID: 34290683
10. Takemura-Uchiyama I., Uchiyama J., Osanai M., Morimoto N., Asagiri T., Ujihara T., Daibata M., Sugiura T., Matsuzaki S. Experimental phage therapy against lethal lung-derived septicemia caused by Staphylococcus aureus in mice. Microbes Infect. 2014; 16: 512–517. DOI: 10.1016/j.micinf.2014.02.011. PMID: 24631574
11. Anand T., Virmani N., Kumar S., Mohanty A.K., Pavulraj S., Bera B.C., Vaid R.K., Ahlawat U., Tripathi B.N. Phage therapy for treatment of virulent Klebsiella pneumoniae infection in a mouse model. J Glob Antimicrob Resist. 2020; 21: 34–41. DOI: 10.1016/j.jgar.2019.09.018. PMID: 31604128
12. Petrovic Fabijan A., Lin R.C.Y., Ho J., Maddocks S., Ben Zakour N.L., Iredell J.R., Westmead Bacteriophage Therapy Team. Safety of bacteriophage therapy in severe Staphylococcus aureus infection. Nat Microbiol. 2020; 5: 465–472. DOI: 10.1038/s41564-019-0634-z. PMID: 32066959
13. Парфенов А.Л., Петрова М.В., Пичугина И.М., Лугинина Е.В. Формирование коморбидности у пациентов с тяжелым повреждением мозга и исходом в хроническое критическое состояние (обзор). Общая реаниматология. 2020; 16 (4): 72–89. DOI: 10.15360/1813-9779-2020-4-72-89
14. Zurabov F., Zhilenkov E. Characterization of four virulent Klebsiella pneumoniae bacteriophages, and evaluation of their potential use in complex phage preparation. Virol J. 2021; 18: 9. DOI: 10.1186/s12985-020-01485-w. PMID: 33407669
15. Slopek S., Weber-Dabrowska B., Dabrowski M., KucharewiczKrukowska A. Results of bacteriophage treatment of suppurative bacterial infections in the years 1981–1986. Arch Immunol Ther Exp. 1987; 35: 569–583.
16. Черневская Е.А., Меглей А.Ю., Буякова И.В., Ковалева Н.Ю., Горшков К.М., Захарченко В.Е., Белобородова Н.В. Таксономический дисбиоз микробиоты и сывороточные биомаркеры как отражение тяжести поражения центральной нервной системы. Вестник Российского государственного медицинского университета. 2020; 5: 58–63. DOI: 10.24075/vrgmu.2020.053
17. Miedzybrodzki R., Fortuna W., Weber-Dabrowska B., Górski A. A retrospective analysis of changes in inflammatory markers in patients treated with bacterial viruses. Clin Exp Med. 2009; 9: 303–312. DOI: 10.1007/s10238-009-0044-2. PMID: 19350363
18. van Hecke O., Wang K., Lee J.J., Roberts N.W., Butler C.C. Implications of Antibiotic Resistance for Patients’ Recovery From Common Infections in the Community: A Systematic Review and Meta-analysis. Clinical Infectious Diseases. Clin Infect Dis. 2017; 65 (3): 371–382. DOI: 10.1093/cid/cix233. PMID: 28369247
19. Popov D.A., Bakulev A. N. National Medical Research Center of Cardiovascular Surgery. Comparative review of the modern methods for carbapenemases detection. Clinical Microbiology and Antimicrobial Chemotherapy. 2019; 21 (2): 125–133 DOI: 10.36488/cmac.2019.2.125-133
20. Meletis G. Carbapenem resistance: overview of the problem and future perspectives. Ther Adv Infect Dis. 2016; 3: 15–21. DOI: 10.1177/2049936115621709. PMID: 26862399
21. Górski A., Międzybrodzki R., Żaczek M., Borysowski J. Phages in the fight against COVID-19? Future Microbiol. 2020; 15: 1095–1100. DOI: 10.2217/fmb-2020-0082. PMID: 32845164.
Review
For citations:
Beloborodova N.V., Grechko A.V., Gurkova M.M., Zurabov A.Yu., Zurabov F.M., Kuzovlev A.N., Megley A.Yu., Petrova M.V., Popova V.M., Redkin I.V., Sergeyev N.I., Chernevskaya E.A., Yuriev M.Yu., Yakovlev A.A. Adaptive Phage Therapy in the Treatment of Patients with Recurrent Pneumonia (Pilot Study). General Reanimatology. 2021;17(6):4-14. https://doi.org/10.15360/1813-9779-2021-6-4-14