Effect of Intraoperative Propofol-Induced Sedation on the Neurotransmitter Levels (Pilot Study)
https://doi.org/10.15360/1813-9779-2021-6-15-19
Abstract
The aim of the study was to determine the changes in the levels of various neurotransmitters depending on the depth of propofol-induced sedation.
Material and methods. Twenty-four patients were included in a prospective, simple blinded study. All patients underwent elective orthopedic intervention with subarachnoid anesthesia and moderate (group 1, n=12) or deep (group 2, n=12) propofol-induced sedation. Peripheral blood sampling for measurement of neurotransmitter levels was performed before regional blockade (Stage 1), 35–40 min after the start of sedation (Stage 2), and 10–15 min after sedation was terminated and consciousness was recovered (Stage 3).
Results. Deep propofol-induced sedation resulted in a decrease in norepinephrine level at stages 2 and 3. Under moderate sedation, its level decreased at Stage 2 and returned to baseline after restoration of consciousness. The initial concentration of norepinephrine (Stage 1) was higher in Group 2.
Conclusion. Propofol-induced sedation resulted in reduced level of the main stress hormone, which suggests its stabilizing effect on autonomic nervous system.
About the Authors
V. O. ChurakovRussian Federation
8 Trubetskaya Str., Bldg. 2, 119991 Moscow, Russia
A. Yu. Zaitsev
Russian Federation
8 Trubetskaya Str., Bldg. 2, 119991 Moscow, Russia
2 Abrikosov Lane, 119435 Moscow, Russia
O. V. Dymova
Russian Federation
2 Abrikosov Lane, 119435 Moscow, Russia
K. V. Dubrovin
Russian Federation
8 Trubetskaya Str., Bldg. 2, 119991 Moscow, Russia
2 Abrikosov Lane, 119435 Moscow, Russia
S. G. Zhukova
Russian Federation
8 Trubetskaya Str., Bldg. 2, 119991 Moscow, Russia
2 Abrikosov Lane, 119435 Moscow, Russia
N. A. Matveeva
Russian Federation
2 Abrikosov Lane, 119435 Moscow, Russia
References
1. Sahinovic M.M., Struys M.M.R.F., Absalom A.R. Clinical Pharmacokinetics and Pharmacodynamics of Propofol. Clin. Pharmacokinet. 2018; 12 (57): 1539–1558. DOI: 10.1007/s40262-018-0672-3. PMID: 30019172
2. Сорокина Е.Ю. Пропофол в современной поликомпонентной общей анестезии. Медицина неотложных состояний. 2014; 3 (58): 69–75.
3. Карнаух Э.В., Сулейманов Р.Л. Пропофол — перспективное индукционное неингаляционное наркозное средство в современной анестезиологии. European Student Scientific Journal. 2014; 3: 15.
4. Nishizawa T., Suzuki H. Propofol for gastrointestinal endoscopy. United European Gastroenterol J. 2018; 6 (6): 801–805. DOI: 10.1177/2050640618767594. PMID: 30023057
5. Tang P., Eckenhoff R. Recent progress on the molecular pharmacology of propofol. F1000Res. 2018; 7: 123. DOI: 10.12688/f1000research.12502.1. PMID: 29445451
6. Tao L., Fan W., Yongxing S., Baoguo W. Detection of electrophysiological activity of amygdala during anesthesia using stereo-EEG: A preliminary research in anesthetized epileptic patients. Biomed. Res. Int. 2020; 2020: 1–9. DOI: 10.1155/2020/6932035. PMID: 33102588
7. Jie Y., Zhuxin L., Yu Z., Yi Z., Yuan W., Song C., Bao F., Hao Y., Lin Z., Wenjing Z., Tian Y. GABAergic ventrolateral pre-optic nucleus neurons are involved in the mediation of the anesthetic hypnosis induced by propofol. Mol. Med. Rep. 2017; 16 (3): 3179–3186. DOI: 10.3892/mmr.2017.7035. PMID: 28765955
8. Liu Y. Histaminergic H1 and H2 receptors mediate the effects of propofol on the noradrenalin-inhibited neurons in rat ventrolateral preoptic nucleus. Neurochem Res. 2017; 42 (5): 1387–1393. DOI: 10.1007/s11064-017-2187-y. PMID: 28185047
9. Liu Y.-W., Zuo W., Ye J.-H. Propofol stimulates noradrenalin-inhibited neurons in the ventrolateral preoptic nucleus by reducing GABAergic inhibition. Anesth & Analg. 2013; 2 (117): 358–363. DOI: 10.1213/ANE.0b013e318297366e. PMID: 23780420
10. Jung S.M., Cho C.K. The effects of deep and light propofol anesthesia on stress response in patients undergoing open lung surgery: a randomized controlled trial. Korean J Anesthesiol. 2015; 3 (68): 224. DOI: 10.4097/kjae.2015.68.3.224. PMID: 26045924
11. Miner J.R., Moore J.C., Plummer D., Gray R.O., Patel S., Ho J.D. Randomized clinical trial of the effect of supplemental opioids in procedural sedation with propofol on serum catecholamines. Acad. Emerg. Med. 2013; 20 (4): 330–337. DOI: 10.1111/acem.12110. PMID: 23701339
12. Mickey B.J., White A.T., Arp A.M., Leonardi K., Torres M.M., Larson A.L., Odell D.H., Whittingham S.A., Beck M.M., Jessop J.E., Sakata D.J., Bushnell L.A., Pierson M.D., Solzbacher D., Kemdrick E.J., Weeks 3rd H.R., Light A.R., Light K.C., Tadler S.C. Propofol for treatment-resistant depression: A pilot study. Intern. J. Neuropsychopharmacol. 2018; 21 (12): 1079–1089. DOI: 10.1093/ijnp/pyy085. PMID: 30260415
13. Bao F., Tian Y., Jie Y., Xingrui G, Mazhong Z. Noradrenergic transmission in the central medial thalamic nucleus modulates the electroencephalographic activity and emergence from propofol anesthesia in rats. J. Neurochem. 2017; 130 (6): 862–873. DOI: 10.1111/jnc.13939. PMID: 28092095
14. Hui C., Dan X., Yu Z., Yan Y., JunXiao L., ChengXi L., Wei S., Tian Y., Jin L. Neurons in the Locus Coeruleus Modulate the Hedonic Effects of Sub-Anesthetic Dose of Propofol. Front. Neurosci. 2021; 15: 1–9. DOI: 10.3389/fnins.2021.636901. PMID: 33767609
15. Li K., Zhou Y., Fu B. Dopaminergic D1 receptors in nucleus basalis modulate recovery from propofol anesthesia in rats. Iran. J. Basic Med. Sci. 2019.23 (3): 298–302. DOI: 10.22038/IJBMS.2019.37716.8962. PMID: 32440315
16. Pain L., Gobaille S., Schleef C., Aunis D., Oberling P. In vivo dopamine measurements in the nucleus accumbens after nonanesthetic and anesthetic doses of propofol in rats. Anesth. Analg.2002; 95 (4): 915–919. DOI: 10.1097/00000539-200210000-00022. PMID: 12351267
17. Wang Y., Yu T., Yuan C., Yuan J., Luo Z., Pan Y., Zhang Y. Effects of propofol on the dopamine, metabolites and GABAA receptors in media prefrontal cortex in freely moving rats. Am. J. Transl. Res. 2016; 8 (5): 2301–2308. PMID: 27347337
18. Mineur Y.S., Cahuzac E.L., Mose T.N., Bentham M.P., Plantenga M.E., Thompdon D.C., Picciotto M.R. Interaction between noradrenergic and cholinergic signaling in amygdala regulates anxiety- and depression-related behaviors in mice. Neuropsychopharmacol. 2018; 43 (10): 2118–2125. DOI: 10.1038/s41386-018-0024-x. PMID: 29472646
19. Aggarwal S., Mortensen O.V. Overview of Monoamine Transporters. Curr. Protoc. Pharmacol. 2017; 1 (79): 12.16.1–12.16.17. DOI: 10.1002/cpph.32. PMID: 29261228
20. Узбеков М.Г., Максимова Н.М. Моноамино-гормональные связи в патогенезе тревожной депрессии. Журнал неврологии и психиатрии им. С. С. Корсакова. Спецвыпуски. 2015; 115 (1–2): 52–55. DOI: 10.17116/jnevro20151151252-55
21. Гайнутдинов М.Х., Хакимова Д.М., Калинникова Т.Б., Шагидуллин Р.Р. О роли холинергической системы в стресс-реакции организма и депрессии. Ульяновский медико-биологический журнал. 2019; 1: 93–102. DOI 10.34014/2227-1848-2019-1-93-102
22. Zhang Y., Yu T., Liu Y., Qian K., Yu B-W. Muscarinic M1 receptors regulate propofol modulation of GABAergic transmission in rat ventrolateral preoptic neurons. J. Mol. Neurosci. 2015; 55 (4): 830–835. DOI: 10.1007/s12031-014-04. PMID: 25294312
23. Морозов В.Н., Хадарцев А.А. К современной трактовке механизмов стресса. Вестник новых медицинских технологий. 2010; 17 (1): 15–17.
24. Хадарцев А.А., Морозов В.Н., Карасёва Ю.В., Хадарцева К.А., Фудин Н.А. Патофизиология стресса как баланс стрессогенных и антистрессовых механизмов. Вестник неврологии, психиатрии и нейрохирургии. 2012; 2: 16–21.
25. Gibbons C.H. Basics of autonomic nervous system function. Handb. Clin. Neurol. 2019; 160: 407–418. DOI: 10.1016/B978-0-444-64032-1.00027-8. PMID: 31277865
26. Elżbieta W.T., Krzysztof O., Zoran S., Szymon B., Hanna M. Choosing the optimal method of anaesthesia in anterior resection of the rectum procedures-assessment of the stress reaction based on selected hormonal parameters. Endokrynol Pol. 2018; 69 (4). DOI: 10.5603/EP.a2018.0038. PMID: 29952408
27. Moreno-Castilla P., Perez-Ortega R., Violante-Soria V., Balderas I., Bermudez-Ratoni F. Hippocampal release of dopamine and norepinephrine encodes novel contextual information. Hippocampus. 2017; 27 (5): 547–557. DOI: 10.1002/hipo.22711. PMID: 28176408
28. Qi C., Shurong L., Yuping H., Xiaohong W., Juan D., Xiaolin W., Bingyin S., Jun L. Toxicological effects of propofol abuse on the dopaminergic neurons in ventral tegmental area and corpus striatum and its potential mechanisms. J. Toxicol. Sci. 2020; 45 (7): 391–399. DOI: 10.2131/jts.45.391. PMID: 32612007
29. Yi Z., Huan G., Zikun D., Tian Y., Jie Z., Xiaoli L., Chengxi L. Dopamine D1 Receptor in the nucleus accumbens modulates the emergence from propofol anesthesia in rat. Neurochem. Res. 2021; 46 (6): 1435–1446. DOI: 10.1007/s11064-021-03284-3. PMID: 33683630
30. Liu Y., Zhao J., Guo W. Emotional roles of mono-aminergic neurotransmitters in major depressive disorder and anxiety disorders. Front Psychol. 2018; 9: 2201. DOI: 10.3389/fpsyg.2018.02201. PMID: 30524332
Review
For citations:
Churakov V.O., Zaitsev A.Yu., Dymova O.V., Dubrovin K.V., Zhukova S.G., Matveeva N.A. Effect of Intraoperative Propofol-Induced Sedation on the Neurotransmitter Levels (Pilot Study). General Reanimatology. 2021;17(6):15-19. https://doi.org/10.15360/1813-9779-2021-6-15-19