Selective Brain Hypothermia in the Comprehensive Rehabilitation of Patients with Chronic Consciousness Disorders
https://doi.org/10.15360/1813-9779-2022-2-45-52
Abstract
Aim: to evaluate clinical effectiveness of selective hypothermia of cerebral cortex for the recovery of awareness in patients with chronic disorders of consciousness (CDC).
Material and methods. 111 patients with CDC 30 and more days after a cerebral event (ischemic or hemorrhagic stroke, brain injury) were included in the study. Exclusion criteria were anoxic brain injury (sequelae of a prolonged asystole or asphyxia), active sepsis, arrhythmia, baseline hypothermia (body temperature lower than 35.5 °С). Experimental group included 60 patients, of them 39 patients were in a vegetative state (VS), 21 patients exhibited patterns of minimally conscious state (MCS). Control group incluted 51 patients, of them 32 patients were in VS and 19 patients were in MCS. Patients in the experimental group received 10 sessions (120 minutes each) of selective brain hypothermia (SBH) during the 14-days follow-up period. Patients of both groups received standard identical neurological treatment and rehabilitation procedures. Patients in the control group did not undergo brain hypothermia. The induction of SBH involved cooling of the whole surface of the craniocerebral area of scalp using special helmets. The temperature of the internal surface of the helmet was 3–7 °С. Temperature of the frontal lobes of the cortex was monitored with non-invasive microwave radiothermometry, axillary temperature was also registered. The level of consciousness was evaluated using «Coma Recovery Scale-Revised» (CRS-R) scale.
Results. 120-minutes long SBH session reduced the temperature of the frontal lobes of the cerebral cortex by 2.4–3.1 °С with no impact on the axillary temperature. Evaluation using CRS-R revealed improvement in all studied functions (auditory, visual, motor, oromotor, communication, arousal) in patients in the experimental group after 10 SBH sessions. Level of consciousness in patients from the experimental group in VS increased from 4.5 ± 0.33 to 8.7 ± 0.91 points (P < 0.001), for patients in MCS from 11.3 ± 1.0 to 18.2 ± 0.70 (P < 0.001) points. In the control group, scores of patients in VS rose from 4.3 ± 0.37 to 6.8 ± 0.49 (P < 0.001) points with the most significant changes in auditory and visual functions (P<0.001). In the control group of patients in MCS the oromotor function improved (P < 0.05), overall CRS-R scores changed insignificantly from 9.1 ± 0.57 to 10.1 ± 0.86 (P < 0.1). The best outcome (CRS-R > 19 points) was seen in patients from the experimental group [6 in VS (15.4 %) and 8 in MCS (31.8 %)]. In the control group, the best results did not exceed 10 points for the patents in VS, while 4 patients in MCS (21 %) reached 12–16 scores. During 30-day follow-up period of hospitalization after the SBH sessions mortality rate was 10 % (6 patients) in the experimental group and 21.6% (11 patients) in the control group.
Conclusion. Patients with CDC could benefit from serial SBH sessions performed as a part of comprehensive treatment and rehabilitation strategy. We suggest that selective reduction of frontal lobe temperature improves neurogenesis, neuronal regeneration, and neuroplasticity.
About the Authors
M. V. PetrovaRussian Federation
Marina V. Petrova
107031
25 Petrovka Str., Bldg. 2
117198
6 Miklukho-Maklaya Str.
Moscow
O. A. Shevelev
Russian Federation
Oleg A. Shevelev
107031
25 Petrovka Str., Bldg. 2
117198
6 Miklukho-Maklaya Str.
Moscow
M. Yu. Yuriev
Russian Federation
Mikhail Yu. Yuriev
107031
25 Petrovka Str., Bldg. 2
Moscow
M. A. Zhdanova
Russian Federation
Maria A. Zhdanova
107031
25 Petrovka Str., Bldg. 2
Moscow
I. Z. Kostenkova
Russian Federation
Inna Z. Kostenkova
107031
25 Petrovka Str., Bldg. 2
Moscow
M. M. Kanarskii
Russian Federation
Mikhail M. Kanarskii
107031
25 Petrovka Str., Bldg. 2
Moscow
References
1. Пирадов М. А. Российская рабочая группа по проблемам хронических нарушений сознания. Хронические нарушения сознания: терминология и диагностические критерии. Результаты первого заседания Российской рабочей группы по проблемам хронических нарушений сознания / / М. А. Пирадов [и др.] // Анналы клинической и экспериментальной неврологии. – 2020. – 14 (1): 5–16. DOI: 10.25692/ACEN.2020.1.1.
2. Giacino J. T., Fins J. J., Laureys S., Schiffet N. D. Disorders of consciousness after acquired brain injury: the state of the science. Nature Reviews neurology. 2014; 10: 99–114. DOI: 10.1038/nrneurol.2013.279.
3. Пирадов М. A. Структурно-функциональные основы хронических нарушений сознания / М. А. Пирадов [и др.] // Анналы клинической и экспериментальной неврологии. – 2018. – 12: 6–15. DOI: 10.25692/ACEN.2018.5.1.
4. Мочалова Е. Г.. Русскоязычная версия пересмотренной шкалы восстановления после комы — стандартизированный метод оценки пациентов с хроническими нарушениями сознания / Е. Г. Мочалова [и др.] // Журнал неврологии и психиатрии. – 2018. – 3: 25–31. DOI: 10.17116/jnevro20181183225-31.
5. Lucca L. F., Lofaro D., Pignolo L., Leto E., Ursino M., Cortese M. D., Conforti D., Tonin P., Cerasa A. Outcome prediction in disorders of consciousness: the role of coma recovery scale revised. BMC Neurology. 2019; 19: 68. DOI: 10.1186/s12883-019-1293-7.
6. Kondziella D., Bender A., Diserens K., van Erp W., Estraneo A., Formisano R., Laureys S., Naccache L., Ozturk S., Rohaut B., Sitt J. D., Stender J., Tiainen M., Rossetti A. O., Gosseries O., Chatelle C. European Academy of Neurology guideline on the diagnosis of coma and other disorders of consciousness. European Journal of Neurology. 2020; 27 (5): 741–756. DOI: 10.1111/ene.14151.
7. Thibaut A., Schiff N., Giacino J., Laureys S., Gosseries O. Therapeutic interventions in patients with prolonged disorders of consciousness. Lancet Neurol. 2019; 18 (6): 600–614. DOI: 10.1016/S1474-4422(19)30031-6.
8. Edlow B. L., Claassen J., Schiff N. D., Greer D. M. Recovery from disorders of consciousness: mechanisms, prognosis and emerging therapies. Nature Reviews Neurology. 2021; 17: 135–156. DOI: 10.1038/s41582-020-00428-x.
9. Rohaut B., Eliseyev A., Claassen J. Uncovering Consciousness in Unresponsive ICU Patients: Technical, Medical and Ethical Considerations. Critical Care. 2019; 23: 78. DOI: 10.1186/s13054-019-2370-4.
10. Shinoda J., Nagamine Y., Kobayashi S., Odaki M., Oka N., Kinugasa K., Nakamura H., Ichida T., Miyashita R., Shima H., Hama T. Multidisciplinary attentive treatment for patients with chronic disorders of consciousness following severe traumatic brain injury in the NASVA of Japan. Brain Injury. 2019; 33 (13–14): 16601670. DOI: 10.1080/02699052.2019.1667535.
11. Sharma-Virk M., van Erp W. S., Lavrijsen J. C. M., Raymond T. C. M. Koopmans. Intensive neurorehabilitation for patients with prolonged disorders of consciousness: protocol of a mixed-methods study focusing on outcomes, ethics and impact. BMC Neurology. 2021; 21: 133. DOI.org/10.1186/s12883-021-02158-z.
12. Gedik N., Kottenberg E., Thielmann M., Frey U. H., Jakob H., Peters J., Heusch G., Kleinbongard P. Potential humoral mediators of remote ischemic preconditioning in patients undergoing surgical coronary revascularization. Scientific Reports. 2017; 7: 12660. DOI: 10.1038/s41598-017-12833-2.
13. Perkins G. D., Gräsner J. T., Semeraro F., Olasveengen T., Soar J., Lott C., Van de Voorde P., Madar J., Zideman D., Mentzelopoulos S., Bossaert L., Greif R., Monsieurs K., Svavarsdóttir H., Nolan J. P. European Resuscitation Council Guidelines 2021: Executive summary. Resuscitation. 2021; 161: 1–60. DOI: 10.1016/j.resuscitation.2021.02.003.
14. Шевелев О. А. Механизмы нейропротекции при церебральной гипотермии (обзор) / О. А. Шевелев [и др.] // Общая реаниматология. – 2019. – 15 (6): 94–114. DOI: 10.15360/1813-9779-2019-6-94-114.
15. Бояринцев В. В. Особенности мозгового кровотока в норме и при патологии на фоне краниоцеребральной гипотермии / В. В. Бояринцев [и др.] // Авиакосмическая и экологическая медицина. – 2019. – 53 (4): 59–64. DOI: 10.21687/0233-528X-2019-53-4-59-64.
16. Schwartz A. E., Finck A. D., Stone J. G., Connolly E. S., Edwards N. M., Mongero L. Delayed Selective Cerebral Hypothermia Decreases Infarct Volume After Reperfused Stroke in Baboons. Journal of Neurosurgical Anesthesiology. 2011; 23 (2): 124–130. DOI: 10.1097/ANA.0b013e3181fa75ca.
17. Гуляев Ю. В. Приборы для диагностики патологических изменений в организме человека методами микроволновой радиометрии / Ю. В. Гуляев [и др.] // Нанотехнологии: разработка, применение. XXI век. – 2017. – 9 (2): 27–45. УДК 520.8.056:612.82.
18. Yin L., Jiang H., Zhao W., Li H. Inducing therapeutic hypothermia via selective brain cooling: a finite element modeling analysis. Medical & Biological Engineering & Computing. 2019; 57 (6): 1313–1322. DOI: 10.1007/s11517-019-01962-7.
19. Kurisu K., Kim J. Y., You J., Yenari M. A. Therapeutic hypothermia and neuroprotection in acute neurological disease. Current Medicinal Chemistry. 2019; 26 (29): 5430–5455. DOI: 10.2174/0929867326666190506124836.
20. Shintani Y., Terao Y., Ohta H. Molecular mechanisms underlying hypothermia-induced neuroprotection. Stroke Research and Treatment. 2011; 3: 1–10. DOI: 10.4061/2011/809874.
21. Rzechorzek N. M., Connick P., Patani R., Selvaraj B. T., Chandran S. Hypothermic preconditioning of human cortical neurons requires proteostatic priming. eBioMedicine. 2015; 2 (6): 528–535. DOI: 10.1016/j.ebiom.2015.04.004.
22. Rzechorzek N. M., Connick P., Livesey M. R., Borooah S., Patani R., Burr K., Story D., Wyllie D. J. A., Hardingham G. E., Chandran S. Hypothermic preconditioning reverses tau ontogenesis in human cortical neurons and is mimicked by protein phosphatase 2A inhibition. EBio-Medicine. 2015; 12 (3): 141–154. DOI: 10.1016/j.ebiom.2015.12.010.
23. Бабкина А. С. Биологические маркеры повреждения и регенерации центральной нервной системы / А. С. Бабкина [и др.] – М.: ООО «ВЦИ». – 2021: 432 c. ISBN 978-5-6044159-0-0.
24. Sun Y. J., Zhang Z. Y., Fan B., Li G. Y. Neuroprotection by therapeutic hypothermia. Front Neurosci. 2019; 13: 586. DOI: 10.3389/fnins.2019.00586.
25. Wu L., Wu D., Yang t., Xu J., Chen J., Wang L., Xu S., Zhao W., Wu C., Ji X. Hypothermic neuroprotection against acute ischemic stroke: the 2019 update. Journal of Cerebral Blood Flow & Metabolism. 2020; 40 (3): 461–481. DOI: 10.1177/0271678X19894869.
Review
For citations:
Petrova M.V., Shevelev O.A., Yuriev M.Yu., Zhdanova M.A., Kostenkova I.Z., Kanarskii M.M. Selective Brain Hypothermia in the Comprehensive Rehabilitation of Patients with Chronic Consciousness Disorders. General Reanimatology. 2022;18(2):45-52. https://doi.org/10.15360/1813-9779-2022-2-45-52