Preview

Общая реаниматология

Расширенный поиск

Органопротективные свойств аргона (обзор)

https://doi.org/10.15360/1813-9779-2022-5-44-59

Аннотация

История изучения органопротективных свойств аргона (Ar) начинается с 1998 г., когда коллектив российских авторов провел исследование воздействия гипоксических газовых смесей на организм млекопитающих. За несколько десятилетий были получены данные о кардио-, нейро-, нефропротективных свойствах аргона при различных патологических состояниях в экспериментальных моделях in vivo и in vitro. Однако, отсутствие на сегодняшний день клинических исследований побудило нас провести систематический обзор с анализом публикаций доклинических исследований, в которых были выявлены органопротективные свойства аргона, что, как представляется, позволило бы приступить к его клиническому изучению.

Цель обзора. Изучение механизмов органопротективных свойств аргона в доклинических исследованиях.

Материалы и методы. В ходе поиска обнаружили 266 статей. Алгоритм поиска информации разработали в соответствии с требованиями и положениями отчетности для систематических обзоров и метаанализов (PRISMA) в базе данных PubMed и Google Scholar. Он включал в себя поиск исследований с использованием поисковых запросов, ключевых слов (в т.ч. MeSH) и логических операторов. Перечень ключевых слов в базе данных PubMed и Google Scholar: «argon», «ar», «protection», «mechanism». В обзор включили исследования, проводимые in vivo и in vitro.

Результаты. В результате выявили следующие механизмы действия аргона: активация N-концевой киназы c-Jun (JNK), p38(ERK1/2), ERK1/2 на моделях эпителиальных клеток дыхательных путей, культурах нейронов и клеток астроглии, а также на модели ишемии сетчатки и реперфузионных повреждений у крыс и модели ишемии-реперфузии миокарда кроликов. На моделях мелких грызунов выявили достоверные нейропротективные эффекты аргона, а также его влияние на процессы апоптоза.

Заключение. Результаты доклинических исследований аргона не только показали его безопасность, но и доказали органопротективные свойства на моделях in vitro, in vivo. Все вышеизложенное позволяет инициировать клинические исследования аргона, которые, как представляется, могли бы существенно улучшить исходы пациентов после церебральных катастроф, в частности, у пациентов после ишемического инсульта.

Об авторах

Е. А. Боева
НИИ общей реаниматологии им. В.А. Неговского, Федеральное научно-клиническое центр реаниматологии и реабилитологии (ФНКЦ РР)
Россия

Екатерина Александровна Боева

107031, Москва, ул. Петровка, д. 25, стр. 2



О. А. Гребенчиков
НИИ общей реаниматологии им. В.А. Неговского, Федеральное научно-клиническое центр реаниматологии и реабилитологии (ФНКЦ РР)
Россия

107031, Москва, ул. Петровка, д. 25, стр. 2



Список литературы

1. Soldatov P.E., D’iachenko A.I., Pavlov B.N., Fedotov A.P., Chuguev A.P. Survival of laboratory animals in argon-containing hypoxic gaseous environments. (in Rus.) Aviakosm Ekolog Med. 1998; 32 (4): 33–37. PMID: 9858985

2. Hafner C., Qi H., Soto-Gonzalez L., Doerr K., Ullrich R., Tretter E.V., Markstaller K., Klein K.U. Argon preconditioning protects airway epithelial cells against hydrogen peroxide-induced oxidative stress. Eur Surg Res. 2016; 57 (3-4): 252–262. DOI: 10.1159/000448682. PMID: 27560977

3. Brücken A., Kurnaz P., Bleilevens C., Derwall M., Weis J., Nolte K., Rossaint R., Fries M. Dose dependent neuroprotection of the noble gas argon after cardiac arrest in rats is not mediated by K (ATP)-channel opening. Resuscitation. 2014; 85 (6): 826–832. DOI: 10.1016/j.resuscitation.2014.02.014. PMID: 24582739

4. Lemoine S., Blanchart K., Souplis M., Lemaitre A., Legallois D., Coulbault L., Simard C., Allouche S., Abraini J.H., Hanouz J-L., Rouet R., Sallé L., Guinamard R., Manrique A. Argon exposure induces postconditioning in myocardial ischemia-reperfusion. J Cardiovasc Pharmacol Ther 2017; 22 (6): 564–573. DOI: 10.1177/1074248417702891. PMID: 28381122

5. Mayer B., Soppert J., Kraemer S., Schemmel S., Beckers C., Bleilevens C., Rossaint R., CoburnN., Goetzenich A., Stoppe C. Argon induces protective effects in cardiomyocytes during the second window of preconditioning. Int J Mol Sci 2016; 17 (7): 1159. DOI: 10.3390/ijms17071159. PMID: 27447611

6. Ulbrich F., Kaufmann K., Roesslein M., Wellner F., Auwärter V., Kempf J., Loop T., Buerkle H., Goebel U. Argon mediates anti-apoptotic signaling and neuroprotection via inhibition of toll-Like receptor 2 and 4. PLoS One. 2015; 10 (12): e0143887. DOI: 10.1371/journal.pone.0143887. PMID: 26624894.

7. Ulbrich F., Lerach T., Biermann J., Kaufmann K.B., Lagreze W.A., Buerkle H., Loop T., Goebel U. Argon mediates protection by interleukin-8 suppression via a TLR2/TLR4/STAT3/NF-κB pathway in a model of apoptosis in neuroblastoma cells in vitro and following ischemia-reperfusion injury in rat retina in vivo. J Neurochem. 2016 Sep; 138 (6): 859–873. DOI: 10.1111/jnc.13662. PMID: 27167824

8. Spaggiari S., Kepp O., Rello-Varona S., Chaba K., Adjemian S., Pype J., Galluzzi L., Lemaire M., Kroemer G. Antiapoptotic activity of argon and xenon. Cell Cycle. 2013; 12 (16): 2636–2642. DOI: 10.4161/cc.25650. PMID: 23907115

9. Fahlenkamp A.V., Rossaint R., Coburn M. Neuroprotection by noble gases: new developments and insights. (in Germ.) Anaesthesist. 2015; 64 (11): 855–858. DOI: 10.1007/s00101-015-0079-6. PMID: 26329914

10. Fahlenkamp A.V., Rossaint R., Haase H., Al Kassam H., Ryang Y-M., Beyer C., Coburn M. The noble gas argon modifies extracellular signal-regulated kinase 1/2 signaling in neurons and glial cells. Eur J Pharmacol. 2012; 674 (2): 104–111. DOI: 10.1016/j.ejphar.2011.10.045. PMID: 22094065

11. Zhao H., Mitchell S., Ciechanowicz S., Savage S., Wang T., Ji X., Ma D. Argon protects against hypoxic-ischemic brain injury in neonatal rats through activation of nuclear factor (erythroid-derived 2)-like 2. Oncotarget. 2016; 7 (18): 25640–51. DOI: 10.18632/oncotarget.8241. PMID: 27016422.

12. Zhao H., Mitchell S., Koumpa S., Cui Y.T., Lian Q., Hagberg H., Johnson M.R., Takata M., Ma D. Heme oxygenase-1 mediates neuroprotection conferred by argon in combination with hypothermia in neonatal hypoxia-ischemia brain injury. Anesthesiology. 2016; 125 (1): 180–192. DOI: 10.1097/ALN.0000000000001128. PMID: 27065095

13. Harris K., Armstrong S.P., Campos-Pires R., Kiru L., Franks N.P., Dickinson R. Neuroprotection against traumatic brain injury by xenon, but not argon, is mediated by inhibition at the N-methyl-D-aspartate receptor glycine site. Anesthesiology 2013; 119 (5): 1137–1148. DOI: 10.1097/ALN.0b013e3182a2a265. PMID: 23867231

14. David H.N., Haelewyn B., Risso J-J., Abraini J.H. Modulation by the noble gas argon of the catalytic and thrombolytic efficiency of tissue plasminogen activator. Naunyn Schmiedebergs Arch Pharmacol 2013; 386 (1): 91–95. DOI: 10.1007/s00210-012-0809-0. PMID: 23142817

15. Höllig A., Weinandy A., Liu J., Clusmann H., Rossaint R., Coburn M. Beneficial properties of argon after experimental subarachnoid hemorrhage: early treatment reduces mortality and influences hippocampal protein expression. Crit Care Med. 2016; 44 (7): e520–9. DOI: 10.1097/CCM.0000000000001561. PMID: 26751611

16. Zhuang L., Yang T., Zhao H., Fidalgo A.R., Vizcaychipi M.P., Sanders R.D., Yu B., Takata M., Johnson M.R., Ma D. The protective profile of argon, helium, and xenon in a model of neonatal asphyxia in rats. Crit Care Med 2012; 40 (6): 1724–1730. DOI: 10.1097/CCM.0b013e3182452164. PMID: 22610177

17. Fahlenkamp A.V., Coburn M., de Prada A., Gereitzig N., Beyer C., Haase H., Rossaint R., Gempt J., Ryang Y-M. Expression analysis following argon treatment in an in vivo model of transient middle cerebral artery occlusion in rats. Med Gas Res. 2014; 4: 11. DOI: 10.1186/2045-9912-4-11. PMID: 25671080

18. Ulbrich F, Schallner N, Coburn M, Loop T, Lagrèze WA, Biermann J, Goebel U. Argon inhalation attenuates retinal apoptosis after ischemia/reperfusion injury in a time- and dose-dependent manner in rats. PLoS One. 2014; 9 (12): e115984. DOI: 10.1371/journal.pone.0115984. PMID: 25535961

19. Ulbrich F, Kaufmann KB, Coburn M, Lagreze WA, Roesslein M, Biermann J, Buerkle H, Loop T, Goebel U. Neuroprotective effects of Argon are mediated via an ERK1/2 dependent regulation of hemeoxygenase-1 in retinal ganglion cells. J Neurochem. 2015; 134 (4): 717–727. DOI: 10.1111/jnc.13115. PMID: 25876941

20. Abraini J.H., Kriem B., Balon N., Rostain J-C., Risso J-J. Gammaaminobutyric acid neuropharmacological investigations on narcosis produced by nitrogen, argon, or nitrous oxide. Anesth Analg. 2003; 96 (3): 746–749. DOI: 10.1213/01.ANE.0000050282.14291.38. PMID: 12598256

21. Faure A., Bruzzese L., Steinberg J.G., Jammes Y., Torrents J., Berdah S.V., Garnier E., Legris T., Loundou A., Chalopin M., Magalon G., Guieu R., Fenouillet E., Lechevallier E. Effectiveness of pure argon for renal transplant preservation in a preclinical pig model of heterotopic autotransplantation. J Transl Med. 2016; 14: 40. DOI: 10.1186/s12967-016-0795-y. PMID: 26847569

22. Liu J., Nolte K., Brook G., Liebenstund L., Weinandy A., Höllig A., Veldeman M., Willuweit A., Langen K.J., Rossaint R., Coburn M. Poststroke treatment with argon attenuated brain injury, reduced brain inflammation and enhanced M2 microglia/macrophage polarization: a randomized controlled animal study. Crit Care. 2019; 23 (1): 198. DOI: 10.1186/s13054-019-2493-7. PMID: 31159847

23. De Roux Q., Lidouren F., Kudela A., Slassi L., Kohlhauer M., Boissady E., Chalopin M., Farjot G., Billoet C., Bruneval P., Ghaleh B., Mongardon N., Tissier R. Argon attenuates multiorgan failure in relation with HMGB1 inhibition. Int J Mol Sci. 2021; 22 (6): 3257. DOI: 10.3390/ijms22063257. PMID: 33806919

24. Qi H., Soto-Gonzalez L., Krychtiuk K.A., Ruhittel S., Kaun C., Speidl W.S., Kiss A., Podesser B.K., Yao S., Markstaller K., Klein K.U., Tretter V. Pretreatment with argon protects human cardiac myocyte-like progenitor cells from oxygen glucose deprivation-induced cell death by activation of AKT and differential regulation of mapkinases. Shock. 2018; 49 (5): 556–563. DOI: 10.1097/SHK.0000000000000998. PMID: 29658909

25. David H.N., Dhilly M., Degoulet M., Poisnel G., Meckler C., Vallée N., Blatteau J.É., Risso J.J., Lemaire M., Debruyne D., Abraini J.H. Argon blocks the expression of locomotor sensitization to amphetamine through antagonism at the vesicular monoamine transporter-2 and mu-opioid receptor in the nucleus accumbens. Transl Psychiatry. 2015; 5 (7): e594. DOI: 10.1038/tp.2015.27. PMID: 26151922

26. Grüßer L., Blaumeiser-Debarry R., Krings M., Kremer B., Höllig A., Rossaint R., Coburn M. Argon attenuates the emergence of secondary injury after traumatic brain injury within a 2-hour incubation period compared to desflurane: an in vitro study. Med Gas Res 2017; 7 (2): 93–100. DOI: 10.4103/2045-9912.208512. PMID: 28744361

27. Moro F., Fossi F., Magliocca A., Pascente R., Sammali E., Baldini F., Tolomeo D., Micotti E., Citerio G., Stocchetti N., Fumagalli F., Magnoni S., Latini R., Ristagno G., Zanier E.R. Efficacy of acute administration of inhaled argon on traumatic brain injury in mice. Br J Anaesth. 2020; 126 (1): 256–264. DOI: 10.1016/j.bja.2020.08.027. PMID: 32977957

28. Creed J., Cantillana-Riquelme V., Yan B.H., Ma S., Chu D., Wang H., Turner D.A., Laskowitz D.T., Hoffmann U. Argon inhalation for 24 h after closed-head injury does not improve recovery, neuroinflammation, or neurologic outcome in mice. Neurocrit Care. 2021; 34 (3): 833-843. DOI: 10.1007/s12028-020-01104-0. PMID: 32959200

29. Koziakova M., Harris K., Edge C.J., Franks N.P., White I.L., Dickinson R. Noble gas neuroprotection: xenon and argon protect against hypoxic-ischaemic injury in rat hippocampus in vitro via distinct mechanisms. Br J Anaesth. 2019; 123 (5): 601–609. DOI: 10.1016/j.bja.2019.07.010. PMID: 31470983

30. Savary G., Lidouren F., Rambaud J., Kohlhauer M., Hauet T., Bruneval P., Costes B., Cariou A., Ghaleh B., Mongardon N., Tissier R. Argon attenuates multiorgan failure following experimental aortic crossclamping. Br J Clin Pharmacol. 2018; 84 (6): 1170–1179. DOI: 10.1111/bcp.13535. PMID: 29388238

31. Wang Y-Z., Li T-T., Cao H-L., Yang W-C. Recent advances in the neuroprotective effects of medical gases. Med Gas Res. 2019; 9 (2): 80–87. DOI: 10.4103/2045-9912.260649. PMID: 31249256

32. Zhang J., Liu W., Bi M., Xu J., Yang H., Zhang Y. Noble gases therapy in cardiocerebrovascular diseases: the novel stars? Front Cardiovasc Med. 2022; 9: 802783. DOI: 10.3389/fcvm.2022.802783. PMID: 35369316

33. Edge C.J., Dickinson R. Argon: a noble, but not inert, treatment for brain trauma? Br J Anaesth. 2021; 126 (1): 41–43. DOI: 10.1016/j.bja.2020.09.028. PMID: 33097180

34. Schneider F.I., Krieg S.M., Lindauer U., Stoffel M., Ryang Y-M. Neuroprotective effects of the inert gas argon on experimental traumatic brain injury in vivo with the controlled cortical impact model in mice. Biology (Basel). 2022; 11 (2): 158. DOI: 10.3390/biology11020158. PMID: 35205025

35. Greenwood A., Evans J., Smit E. New brain protection strategies for infants with hypoxic-ischaemic encephalopathy. Paediatrics and Child Health. 2018; 28 (9): 405–411. ISSN 1751-7222. DOI: 10.1016/j.paed.2018.06.004

36. De Giorgio D., Magliocca A., Fumagalli F., Novelli D., Olivari D., Staszewsky L., Latini R., Ristagno G. Ventilation with the noble gas argon in an in vivo model of idiopathic pulmonary arterial hypertension in rats. Med Gas Res. 2021; 11 (3): 124–125. DOI: 10.4103/2045-9912.314333. PMID: 33942784

37. Suleiman S., Klassen S., Katz I., Balakirski G., Krabbe J., von Stillfried S., Kintsler S., Braunschweig T., Babendreyer A., Spillner J., Kalverkamp S., Schröder T., Moeller M., Coburn M., Uhlig S., Martin C., Rieg A.D. Argon reduces the pulmonary vascular tone in rats and humans by GABA-receptor activation. Sci Rep. 2019; 9 (1): 1902. DOI: 10.1038/s41598-018-38267-y. PMID: 30760775

38. Le Nogue, D., Lavaur, J., Milet, A., Ramirez-Gil J-F., Katz I., Lemaire M., Farjot G., Hirsch E.C., Michel P.P. Neuroprotection of dopamine neurons by xenon against low-level excitotoxic insults is not reproduced by other noble gases. J Neural Transm (Vienna). 2020; 127 (1): 27–34 DOI: 10.1007/s00702-019-02112-x. PMID: 31807953

39. Kundu S.K., Chakraborty C., Yagihara S., Teoh S.L., Das S. Anesthetic molecule interaction of noble gases with proteins and lipids and their effect: a review. Curr Drug Deliv. 2018; 15 (10): 1381–1392. DOI: 10.2174/1567201815666180820101255. PMID: 30124152

40. Htun Y., Nakamura S., Kusaka T. Hydrogen and therapeutic gases for neonatal hypoxic-ischemic encephalopathy: potential neuroprotective adjuncts in translational research. Pediatr Res. 2021; 89 (4): 753–759. DOI: 10.1038/s41390-020-0998-z. PMID: 32505123

41. Solevåg A.L., Schmölzer G.M., Cheung P.Y. Novel interventions to reduce oxidative-stress related brain injury in neonatal asphyxia. Free Radic Biol Med. 2019; 142: 113–122. DOI: 10.1016/j.freeradbiomed.2019.04.028. PMID: 31039399

42. Nair S.G. Argon: the future organ protectant? Ann Card Anaesth. 2019; 22 (2): 111–112. DOI: 10.4103/aca.ACA_180_18. PMID: 30971590

43. Moher D., Liberati A., Tetzlaff J., Altman D.G., PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009; 6 (7): e1000097. DOI: 10.1371/journal.pmed.1000097. PMID: 19621072

44. Alshami A., Einav S., Skrifvars M.B., Varon J. Administration of inhaled noble and other gases after cardiopulmonary resuscitation: a systematic review. Am J Emerg Med. 2020; 38 (10): 2179–2184. DOI: 10.1016/j.ajem.2020.06.066. PMID: 33071073

45. Rohel A., Rossaint R., Coburn M. Update of the organoprotective properties of xenon and argon: from bench to beside. Intensive Care Med Exp. 2020; 8 (1): 11. DOI: 10.1186/s40635-020-0294-6. PMID: 32096000

46. Deng R-M., Li H-Y., Li X., Shen H-T., Wu D-G., Wang Z., Chen G. Neuroprotective effect of helium after neonatal hypoxic ischemia: a narrative review. Med Gas Res. 2021; 11 (3): 121–123. DOI: 10.4103/2045-9912.314332. PMID: 33942783.

47. Gardner A.J., Menon D.K. Moving to human trials for argon neuroprotection in neurological injury: a narrative review. Br J Anaesth. 2018; 120 (3): 453-468. DOI: 10.1016/j.bja.2017.10.017. PMID: 29452802

48. Höllig A., Coburn M. Noble gases and neuroprotection: summary of current evidence. Curr Opin Anaesthesiol. 2021; 34 (5): 603–606. DOI: 10.1097/ACO.0000000000001033. PMID: 34224430

49. De Deken J., Rex S., Lerut E., Martinet W., Monbaliu D., Pirenne J., Jochmans I. Postconditioning effects of argon or xenon on early graft function in a porcine model of kidney autotransplantation. Br J Surg. 2018; 105 (8): 1051–1060. DOI: 10.1002/bjs.10796. PMID: 29603122

50. Magliocca A., Fries M. Inhaled gases as novel neuroprotective therapies in the postcardiac arrest period. Curr Opin Crit Care. 2021; 27 (3): 255–260. DOI: 10.1097/MCC.0000000000000820. PMID: 33769417

51. Shin S.S, Hwang M., Diaz-Arrastia R., Kilbaugh T.J. Inhalational gases for neuroprotection in traumatic brain injury. J Neurotrauma. 2021; 38 (19): 2634–2651. DOI: 10.1089/neu.2021.0053. PMID: 33940933.

52. Diao M-Y., Zhu Y., Yang J., Xi S-S., Wen X., Gu Q., Hu W. Hypothermia protects neurons against ischemia/reperfusion-induced pyroptosis via m6A-mediated activation of PTEN and the PI3K/Akt/GSK-3β signaling pathway. Brain Res Bull. 2020; 159: 25-31. DOI: 10.1016/j.brainresbull.2020.03.011. PMID: 32200003

53. Fu X., Zhong X., Chen X., Yang D., Zhou Z., Liu Y. GSK-3β activates NF-κB to aggravate caerulein-induced early acute pancreatitis in mice. Ann Transl Med. 2021; 9 (22): 1695. DOI: 10.21037/atm-21-5701. PMID: 34988204

54. Кузовлев А.Н., Шпичко А.И., Рыжков И.А., Гребенчиков О.А., Шабанов А.К., Хусаинов Ш.Ж., Цоколаева, З. И., Лобанов А.В. Влияние ксенона на фосфорилирование киназы гликогенсинтазы-3β и антиоксидантные ферменты в мозге крыс. Журнал им. Н.В. Склифосовского Неотложная медицинская помощь. 2020; 9 (4): 564–572. DOI.10.23934/2223-9022-2020-9-4-564-57213

55. Filev A.D., Silachev D.N., Ryzhkov I.A., Lapin K.N., Babkina A.S., Grebenchikov O.A., Pisarev V.M. Effect of xenon treatment on gene expression in brain tissue after traumatic brain injury in rats. Brain Sci. 2021; 11 (7): 889. DOI: 10.3390/brainsci11070889. PMID: 34356124;

56. Черпаков Р.А., Гребенчиков О.А. Влияние концентрации хлорида лития на его нейропротекторные свойства при ишемическом инсульте у крыс. Общая реаниматология. 2021; 17 (5): 101–110. DOI: 10.15360/1813-9779-2021-5-101-110

57. Jawad N., Rizvi M., Gu J., Adeyi O., Tao G., Maze M., Ma D. Neuroprotection (and lack of neuroprotection) afforded by a series of noble gases in an in vitro model of neuronal injury. Neurosci Lett. 2009; 460 (3): 232–236. DOI: 10.1016/j.neulet.2009.05.069. PMID: 19500647

58. Ma S., Chu D., Li L., Creed J.A., Ryang Y-M., Sheng H., Yang W., Warner D.S., Turner D.A., Hoffmann U. Argon inhalation for 24 hours after onset of permanent focal cerebral ischemia in rats provides neuroprotection and improves neurologic outcome. Crit Care Med. 2019 47 (8): e693–e699. DOI: 10.1097/CCM.0000000000003809. PMID: 31094741

59. Kremer B, Coburn M, Weinandy A, Nolte K, Clusmann H, Veldeman M, Höllig A. Argon treatment after experimental subarachnoid hemorrhage: evaluation of microglial activation and neuronal survival as a subanalysis of a randomized controlled animal trial. Med Gas Res. 2020; 10 (3): 103–109. DOI: 10.4103/2045-9912.296039. PMID: 33004706

60. Brücken A, Kurnaz P, Bleilevens C, Derwall M, Weis J, Nolte K, Rossaint R., Fries M. Delayed argon administration provides robust protection against cardiac arrest-induced neurological damage. Neurocrit Care. 2015; 22: 112–2. DOI: 10.1007/s12028-014-0029-1. PMID: 25081369

61. Zuercher P., Springe D., Grandgirard D., Leib S.L., Grossholz M., Jakob S., Takala J., Haenggi M. A randomized trial of the effects of the noble gases helium and argon on neuroprotection in a rodent cardiac arrest model. BMC Neurol. 2016; 16: 43. DOI: 10.1186/s12883-016-0565-8. PMID: 27044425

62. Fumagalli F., Olivari D., Boccardo A., De Giorgio D., Affatato R., Ceriani S., Bariselli S., Sala G., Cucino A., Zani D., Novelli D., Babini G., Magliocca A., Russo I., Staszewsky L., Salio M., Lucchetti J., Maisano A.M., Fiordaliso F., Furlan R., Gobbi M., Luini M.V., Pravettoni D., Scanziani E., Belloli A., Latini R., Ristagno G. Ventilation with argon improves survival with good neurological recovery after prolonged untreated cardiac arrest in pigs. J Am Heart Assoc. 2020; 9 (24): e016494. DOI: 10.1161/JAHA.120.016494. PMID: 33289464

63. Ristagno G., Fumagalli F., Russo I., Tantillo S., Zani D.D., Locatelli V., De Maglie M., Novelli D., Staszewsky L., Vago T., Belloli A., Di Giancamillo M., Fries M., Masson S., Scanziani E., Latini R. Postresuscitation treatment with argon improves early neurological recovery in a porcine model of cardiac arrest. Shock. 2014; 41 (1): 72–78. DOI: 10.1097/SHK.0000000000000049. PMID: 24088999

64. Loetscher P.D., Rossaint J., Rossaint R., Weis J., Fries M., Fahlenkamp A., Ryang Y-M, Grottke O., Coburn M. Argon: neuroprotection in in vitro models of cerebral ischemia and traumatic brain injury. Crit Care 2009; 13 (6): R206. DOI: 10.1186/cc8214. PMID: 20017934

65. Alderliesten T., Favie L.M., Neijzen R.W., Auwärter V., Nijboer C.H,. Marges R.E., Rademaker C.M., Kempf J., van Bel F., Groenendaal F. Neuroprotection by argon ventilation after perinatal asphyxia: a safety study in newborn piglets. PLoS One 2014; 9 (12): e113575. DOI: 10.1371/journal.pone.0113575. PMID: 25460166

66. Broad K.D., Fierens I., Fleiss B., Rocha-Ferreira E., Ezzati M., Hassell J., Alonso-Alconada D., Bainbridge A., Kawano G., Ma D., Tachtsidis I., Gressens P., Golay X., Sanders R.D., Robertson N.J. Inhaled 45–50% argon augments hypothermic brain protection in a piglet model of perinatal asphyxia. Neurobiol Dis. 2016; 87: 29–38. DOI: 10.1016/j.nbd.2015.12.001. PMID: 26687546

67. Zhao H., Luo X., Zhou Z., Liu J., Tralau-Stewart C., George A.J.T., Ma D. Early treatment with xenon protects against the cold ischemia associated with chronic allograft nephropathy in rats. Kidney Int. 2014; 85 (1): 112–123. DOI: 10.1038/ki.2013.334. PMID: 24025645

68. Soo E., Marsh C., Steiner R., Stocks L., McKay D.B. Optimizing organs for transplantation; advancements in perfusion and preservation methods. Transplant Rev (Orlando). 2020; 34 (1): 100514. DOI: 10.1016/j.trre.2019.100514. PMID: 31645271

69. Irani Y., Pype J.L., Martin A.R., Chong C.F., Daniel L., Gaudart J., Ibrahim Z., Magalon G., Lemaire M., Hardwigsen J. Noble gas (argon and xenon)-saturated cold storage solutions reduce ischemia-reperfusion injury in a rat model of renal transplantation. Nephron Extra. 2011; 1 (1): 272–282. DOI: 10.1159/000335197. PMID: 22470401

70. Kiss A., Shu H., Hamza O., Santer D., Tretter E.V., Yao S., Markstaller K., Hallström S., Podesser B.K., Klein K.U. Argon preconditioning enhances postischaemic cardiac functional recovery following cardioplegic arrest and global cold ischaemia. Eur J Cardiothorac Surg. 2018; 54 (3): 539–546. DOI: 0.1093/ejcts/ezy104. PMID: 29547976

71. Westenberger G., Sellers J., Fernando S., Junkins S., Han S.M., Min K., Lawan A. Function of mitogen-activated protein kinases in hepatic inflammation. J Cell Signal. 2021; 2 (3): 172–180. PMID: 34557866

72. Lin Y., Xu Y., Zhang Z. Sepsis-induced myocardial dysfunction (SIMD): the pathophysiological mechanisms and therapeutic strategies targeting mitochondria. Inflammation. 2020; 43 (4): 1184–1200. DOI: 10.1007/s10753-020-01233-w. PMID: 32333359

73. Liu X., Wei B., Bi Q., Sun Q., Li L., He J., Weng Y., Zhang S., Mao G., Bao Y., Wan S., Shen X.Z., Yan J., Shi P. MPTP-induced impairment of cardiovascular function. Neurotox Res. 2020; 38 (1): 27–37. DOI: 10.1007/s12640-020-00182-4. PMID: 32198706

74. Chen M.W., Santos P., Kulikowicz E., Koehler R.C., Lee J.K., Martin L.J. Targeting the mitochondrial permeability transition pore for neuroprotection in a piglet model of neonatal hypoxic-ischemic encephalopathy. J Neurosci Res. 2021; 99 (6): 1550–1564. DOI: 10.1002/jnr.24821. PMID: 33675112

75. Schauer A., Barthel P., Adams V., Linke A., Poitz D.M., Weinbrenner C. Pharmacological pre- and postconditioning with levosimendan protect H9c2 cardiomyoblasts from anoxia/reoxygenation-induced cell death via PI3K/Akt signaling. J Cardiovasc Pharmacol. 2021; 77 (3): 378–385. DOI: 10.1097/FJC.0000000000000969. PMID: 33662980

76. Raupach A., Reinle J., Stroethoff M., Mathes A., Heinen A., Hollmann M.W., Huhn R., Bunte S. Milrinone-induced pharmacological preconditioning in cardioprotection: hints for a role of mitochondrial mechanisms. J Clin Med. 2019; 8 (4): 507. DOI: 10.3390/jcm8040507. PMID: 31013843

77. Intachai K., C. Chattipakorn S.C., Chattipakorn N., Shinlapawittayatorn K. Revisiting the cardioprotective effects of acetylcholine receptor activation against myocardial ischemia/reperfusion injury. Intl J Mol Sci. 2018; 19 (9): 2466. DOI: 10.3390/ijms19092466. PMID: 30134547

78. Rout A., Tantry U.S., Novakovic M., Sukhi A., Gurbel P.A. Targeted pharmacotherapy for ischemia reperfusion injury in acute myocardial infarction. Expert Opin Pharmacother. 2020; 21 (15): 1851–1865. DOI: 10.1080/14656566.2020.1787987. PMID: 32659185

79. Shanmugam K., Boovarahan S.R., Prem P, Sivakumar B., Kurian G.A. Fisetin attenuates myocardial ischemia-reperfusion injury by activating the reperfusion injury salvage kinase (RISK) signaling pathway. Front Pharmacol. 2021; 12: 566470. DOI: 10.3389/fphar.2021.566470. PMID: 33762932

80. Yang X., Yue R., Zhang J., Zhang X., Liu Y., Chen C., Wang X., Luo H., Wang W.E., Chen X., Wang H.J., Jose P.A., Wang H., Zeng C. Gastrin protects against myocardial ischemia/reperfusion injury via activation of RISK (Reperfusion Injury Salvage Kinase) and SAFE (Survivor Activating Factor Enhancement) pathways. J Am Heart Assoc. 2018; 7 (14): e005171. DOI: 10.1161/JAHA.116.005171. PMID: 30005556

81. Ma H., Hao J., Liu H., Yin J., Qiang M., Liu M., He S., Zeng D., Liu X., Lian C., Gao Y. Peoniflorin preconditioning protects against myocardial ischemia/reperfusion injury through inhibiting myocardial apoptosis: RISK pathway involved. Appl Biochem Biotechnol. 2022; 194 (3): 1149–1165. DOI: 10.1007/s12010-021-03680-z. PMID: 34596828

82. Li J., Jia Z., Zhang Q., Dai J., Kong J., Fan Z., Li G. Inhibition of ERK1/2 phosphorylation attenuates spinal cord injury induced astrocyte activation and inflammation through negatively regulating aquaporin-4 in rats. Brain Res Bull. 2021; 170: 162–173. DOI: 10.1016/j.brainresbull.2021.02.014. PMID: 33592275

83. Xiao K., Liu P., Yan P., Liu Y, Song L., Liu Y., Xie L. N6-methyladenosine reader YTH N6-methyladenosine RNA binding protein 3 or insulin like growth factor 2 mRNA binding protein 2 knockdown protects human bronchial epithelial cells from hypoxia/reoxygenation injury by inactivating p38 MAPK, AKT, ERK1/2, and NF-κB pathways. Bioengineered. 2022; 13 (5): 11973-11986. DOI: 10.1080/21655979.2021.1999550. PMID: 34709120

84. Li J., Fu X., Cao S., Li J., Xing S., Li D., Dong Y., Cardin D., Park H.W., Mauvais-Jarvis F., Zhang H. Membrane-associated androgen receptor (AR) potentiates its transcriptional activities by activating heat shock protein 27 (HSP27). J Biol Chem. 2018; 293 (33): 12719–12729. DOI: 10.1074/jbc.RA118.003075. PMID: 29934310

85. Fawzy M.A., Maher S.A., Bakkar S.M., El-Rehany M.A., Fathy M. Pantoprazole attenuates MAPK (ERK1/2, JNK, p38)-NF-κB and apoptosis signaling pathways after renal ischemia/reperfusion injury in rats. Int J Mol Sci. 2021; 22 (19): 10669. DOI: 10.3390/ijms221910669. PMID: 34639009

86. Zhao Z., Zhang Y., Wang C., Wang X., Wang Y., Zhang H. Angiotensin II upregulates RANKL/NFATC1 expression in synovial cells from patients with rheumatoid arthritis through the ERK1/2 and JNK pathways. J Orthop Surg Res. 2021; 16 (1): 297. DOI: 10.1186/s13018-021-02451-0. PMID: 33952303

87. Ouyang W., Frucht D.M. Erk1/2 inactivation-induced c-Jun degradation is regulated by protein phosphatases, UBE2d3, and the C-terminus of c-Jun. Int J Mol Sci. 2021; 22 (8): 3889. DOI: 10.3390/ijms22083889. PMID: 33918729

88. Goebel U., Scheid S., Spassov S., Schallner N., Wollborn J., Buerkle H., Ulbrich F. Argon reduces microglial activation and inflammatory cytokine expression in retinal ischemia/reperfusion injury. Neural Regen Res. 2021; 16 (1): 192-198. DOI: 10.4103/1673-5374.290098. PMID: 32788476

89. Kimura M., Oda Y., Hirose Y., Kimura H., Yoshino K., Niitsu T., Kanahara N., Shirayama Y., Hashimoto K., Iyo M. Upregulation of heat-shock protein HSP-70 and glutamate transporter-1/glutamine synthetase in the striatum and hippocampus in haloperidol-induced dopamine-supersensitivity-state rats. Pharmacol Biochem Behav. 2021; 211: 173288. DOI: 10.1016/j.pbb.2021.173288. PMID: 34653399

90. Rastogi S., Haldar C. Role of melatonin and HSF-1HSP-70 in modulating cold stress-induced immunosuppression in a tropical rodent- Funambulus pennanti. J Therm Biol. 2020; 87: 102456. DOI: 10.1016/j.jtherbio.2019.102456. PMID: 32001016

91. Schmitz S.M., Dohmeier H., Stoppe C., Alizai P.H., Schipper S., Neumann U.P., Coburn M., Ulmer T.F. Inhaled argon impedes hepatic regeneration after ischemia/reperfusion injury in rats. Int J Mol Sci. 2020 ; 21 (15): 5457. DOI: 10.3390/ijms21155457. PMID: 32751707

92. Teng W., Fan J., Zhang W.X. Iron-catalyzed selective denitrification over N-doped mesoporous carbon. ACS Appl Mater Interfaces. 2020; 12 (25): 28091–28099. DOI: 10.1021/acsami.0c03953. PMID: 32413255

93. Bickels J., Campanacci D.A. Local adjuvant substances following curettage of bone tumors. J Bone Joint Surg Am. 2020; 102 (2): 164–174. DOI: 10.2106/JBJS.19.00470. PMID: 31613863

94. Ismail M., Nielsen T.K., Lagerveld B., Garnon J., Breen D, King A., van Strijen M., Keeley F.X. Jr. Renal cryoablation: multidisciplinary, collaborative and perspective approach. Cryobiology. 2018; 83: 90–94. DOI: 10.1016/j.cryobiol.2018.06.002. PMID: 29890126

95. Lundell R.V., Wuorimaa T., Räisänen-Sokolowski A., Sundholm J.K., Rintamäki H., Rissanen S., Parkkola K. Comparison of argon and air as thermal insulating gases in drysuit dives during military Arctic diving equipment development tests. Undersea Hyperb Med. 2019; 46 (4): 429–435. PMID: 31509899

96. Nycz M., Paradowska E., Arkusz K., Pijanowska D.G. Influence of geometry and annealing temperature in argon atmosphere of TiO₂ nanotubes on their electrochemical properties. Acta Bioeng Biomech. 2020; 22 (1): 165–177. PMID: 32307458

97. Tan Y.W., Ye Y., Sun L. Argon-helium cryoablation for thoracic vertebrae with metastasis of hepatocellular carcinoma-related hepatitis B: a case report. World J Clin Cases. 2020; 8 (2): 377–381. DOI: 10.12998/wjcc.v8.i2.377. PMID: 32047788

98. Ning J., Zhao H., Chen B., Mi E.Z., Yang Z., Qing W., Lam K.W.J., Yi B., Chen Q., Gu J., Ichim T. Bogin V., Lu K. Ma D. Argon mitigates impaired wound healing process and enhances wound healing in vitro and in vivo. Theranostics. 2019; 9 (2): 477–490. DOI: 10.7150/thno.29361. PMID: 30809288

99. Li X., Zhang Z.W., Wang Z., Li J.Q., Chen G. The role of argon in stroke. Med Gas Res. 2018; 8 (2): 64–66. DOI: 10.4103/2045-9912.235129. PMID: 30112168

100. Murgu S., Laxmanan B., Stoy S., Egressy K., Chaddha U., Farooqui F., Brunner R., Hogarth K., Chaney M. Evaluation of safety and shortterm outcomes of therapeutic rigid bronchoscopy using total intravenous anesthesia and spontaneous assisted ventilation. Respiration. 2020; 99 (3): 239–247. DOI: 10.1159/000504679. PMID: 31851991

101. Material safety data sheet gaseous argon, Universal Industrial Gases, Inc. Available from: http://www.uigi.com/MSDS_gaseous_Ar.html. [Revision Date: April 25, 2015].

102. Nespoli F., Redaelli S., Ruggeri L., Fumagalli F., Olivari D., Ristagno G. A complete review of preclinical and clinical uses of the noble gas argon: evidence of safety and protection. Ann Card Anaesth. 2019; 22 (2): 122–135. DOI: 10.4103/aca.ACA_111_18. PMID: 30971592

103. Cucino A., Ruggeri L., Olivari D., De Giorgio D., Latini R., Ristagno G. Safety of ventilation with an argon and oxygen gas mixture. Br J Anaesth. 2019; 122 (2): e31–e32. DOI: 10.1016/j.bja.2018.11.010. PMID: 30686325

104. Campos-Pires R., Koziakova M., Yonis A.Y., Pau A., Macdonald W., Harris K., Edge C.J., Franks N.P., Mahoney P.F., Dickinson R. Xenon protects against blast-induced traumatic brain injury in an in vitro model. J Neurotrauma. 2018; 35 (8): 1037–1044. DOI: 10.1089/neu.2017.5360. PMID: 29285980

105. Campos-Pires R., Hirnet T., Valeo F., Ong B.E., Radyushkin K.A., Aldhoun J., Saville J., Edge C.J., Franks N.P., Thal S.C., Dickinson R. Xenon improves long-term cognitive function, reduces neuronal loss and chronic neuroinflammation, and improves survival after traumatic brain injury in mice. Br J Anaesth. 2019; 123 (1): 60–73. DOI: 10.1016/j.bja.2019.02.032. PMID: 31122738

106. Filev A.D., Silachev D.N., Ryzhkov I.A., Lapin K.N., Babkina A.S., Grebenchikov O.A., Pisarev V.M. Effect of xenon treatment on gene expression in brain tissue after traumatic brain injury in rats. Brain Sci. 2021: 11 (7); 889. DOI: 10.3390/brainsci11070889. PMID: 34356124

107. Moro F., Fossi F., Magliocca A., Pascente R., Sammali E., Baldini F., Tolomeo D., Micotti E., Citerio G., Stocchetti N., Fumagalli F., Magnoni S., Latini R., Ristagno G., Zanier E.R. Efficacy of acute administration of inhaled argon on traumatic brain injury in mice. Br J Anaesth. 2021; 126 (1): 256–264. DOI: 10.1016/j.bja.2020.08.027. PMID: 32977957

108. Zhang M., Cui Y., Cheng Y., Wang Q., Sun H. The neuroprotective effect and possible therapeutic application of xenon in neurological diseases. J Neurosci Res. 2021; 99 (12): 3274–3283. DOI: 10.1002/jnr.24958. PMID: 34716615

109. Maze M., Laitio T. Neuroprotective properties of xenon. Mol Neurobiol. 2020 Jan; 57 (1): 118–124. DOI: 10.1007/s12035-019-01761-z. PMID: 31758401

110. Wang J., Li R. Peng Z., Hu B., Rao X., Li J. HMGB1 participates in LPS-induced acute lung injury by activating the AIM2 inflammasome in macrophages and inducing polarization of M1 macrophages via TLR2, TLR4, and RAGE/NF-κB signaling pathways. Int J Mol Med. 2020; 45 (1): 61-80. DOI: 10.3892/ijmm.2019.4402. PMID: 31746367

111. Zewinger S., Reiser J., Jankowski V., Alansary D., Hahm E., Triem S,. Klug M., Schunk S.J., Schmit D., Kramann R., Körbel C., Ampofo E., Laschke M.W., Selejan S.R., Paschen A., Herter T., Schuster S., Silbernagel G., Sester M., Sester U., Aßmann G., Bals R., Kostner G., Jahnen-Dechent W., Menger M.D., Rohrer L., März W., Böhm M., Jankowski J., Kopf M., Latz E., Niemeyer B.A., Fliser D., Laufs U., Speer T. Apolipoprotein C3 induces inflammation and organ damage by alternative inflammasome activation. Nat Immunol. 2020; 21 (1): 30-41. DOI: 10.1038/s41590-019-0548-1. PMID: 31819254.

112. Mitsui Y., Hou L., Huang X., Odegard K.C., Pereira L.M., Yuki K. Volatile anesthetic sevoflurane attenuates toll-like receptor1/2 activation. Anesth Analg. 2020; 131 (2): 631–639. DOI: 10.1213/ANE.0000000000004741. PMID: 32149756.


Рецензия

Для цитирования:


Боева Е.А., Гребенчиков О.А. Органопротективные свойств аргона (обзор). Общая реаниматология. 2022;18(5):44-59. https://doi.org/10.15360/1813-9779-2022-5-44-59

For citation:


Boeva E.A., Grebenchikov O.A. Organoprotective Properties of Argon (Review). General Reanimatology. 2022;18(5):44-59. https://doi.org/10.15360/1813-9779-2022-5-44-59

Просмотров: 1119


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)