Preview

General Reanimatology

Advanced search

Ultrasound-Based Cardiac Output Monitoring During Pediatric Open-Heart Surgery in Children

https://doi.org/10.15360/1813-9779-2024-5-37-43

Abstract

Aim of the study. To evaluate the feasibility of using non-invasive hemodynamic monitoring technology based on Doppler ultrasound during open-heart surgery in children.

Material and methods. Prospective, observational, single-center cohort study included 20 patients aged 10 to 34 months undergoing surgery for congenital heart defects. Ten patients underwent atrial septal defect closure (ASD group), other 10 patients had ventricular septal defect closure (VSD group). Cardiac output (CO) was measured in all patients to guide inotropic and infusion therapy adjustments at three control time points: (1) after intubation and before skin incision, (2) during the immediate post-bypass period with the chest open after weaning from cardiopulmonary bypass (CPB), and (3) after sternal closure and before transfer to the intensive care unit (ICU).

Results. At time point 1, the CO values for both the ASD and VSD groups were within the normal reference range: 5.2 L/min [4.7; 5.5] and 5.1 L/min [4.6; 5.6], respectively. At time point 2, CO was measured in 15 of 20 patients, including 8 patients in the ASD group and 7 in the VSD group. Coverage was 75% because of the challenges of measuring 5 patients on the operating table. In the immediate post-bypass period, two patients with VSD (25%) developed hypotension with CO reduced to 3.6 L/min, which is lower than the age-related hemodynamic reference value (5.1 L/min). Inotropic support in these two patients was increased by switching from dopamine, 7 mcg/kg/min, to adrenaline at a dose of 0.05 mcg/kg/min, resulting in improvement of hemodynamic parameters and an increase in CO to 5.2 L/min and 5.0 L/min, respectively, compared to normal agerelated reference values (4.1; 6.1 L/min). After sternal closure, CO values in both groups did not differ significantly from age-related reference values.

Conclusion. The USCOM cardiac output monitoring device can be used to manage intraoperative hemodynamics and adjust inotropic therapy even during open chest surgery. However, its routine use in all stages of surgery with median sternotomy is difficult because it requires more time to align the aortic valve projection.

About the Authors

Nikolay A. Soloviev
A. N. Bakulev National Medical Research Center for Cardiovascular Surgery, Russian Ministry of Health; G. N. Speransky Children's City Clinical Hospital No. 9, Moscow Health Department
Russian Federation

135 Rublevskoe shosse, 121552 Moscow

29 Shmitovsky pr., 123317 Moscow



Mikhail M. Rybka
A. N. Bakulev National Medical Research Center for Cardiovascular Surgery, Russian Ministry of Health
Russian Federation

135 Rublevskoe shosse, 121552 Moscow



Jumber Ya. Khinchagov
A. N. Bakulev National Medical Research Center for Cardiovascular Surgery, Russian Ministry of Health
Russian Federation

135 Rublevskoe shosse, 121552 Moscow



Sofya M. Tsoi
A. N. Bakulev National Medical Research Center for Cardiovascular Surgery, Russian Ministry of Health
Russian Federation

135 Rublevskoe shosse, 121552 Moscow



Gleb E. Gorbunov
A. N. Bakulev National Medical Research Center for Cardiovascular Surgery, Russian Ministry of Health
Russian Federation

135 Rublevskoe shosse, 121552 Moscow



Denis A. Dibin
A. N. Bakulev National Medical Research Center for Cardiovascular Surgery, Russian Ministry of Health
Russian Federation

135 Rublevskoe shosse, 121552 Moscow



Zera A. Kodzokov
A. N. Bakulev National Medical Research Center for Cardiovascular Surgery, Russian Ministry of Health
Russian Federation

135 Rublevskoe shosse, 121552 Moscow



Madina Yu. Chomaeva
A. N. Bakulev National Medical Research Center for Cardiovascular Surgery, Russian Ministry of Health
Russian Federation

135 Rublevskoe shosse, 121552 Moscow



References

1. Intensive care: national guidelines in 2 vols. Zabolotskikh I. B., Protsenko D. N. (ed). M.: GEOTAR-Media; 2021; I: 1152. (The «National Guidelines» series). (in Russ.). ISBN 978-5-9704-6258-4.

2. Kodzokova Z. A., Lomakin M. V., Rybka M. M., Dibin D. A. Intraoperative measurement of central hemodynamics by cold thermodilution using a Swan–Ganz catheter in a patient with corrected transposition of the great arteries. Clinical Physiology of Blood Circulation = Klinicheskaya Fiziologiya Krovoobrashcheniya. 2020; 17 (2): 142–147. (in Russ.). DOI: 10.24022/1814-6910-2020-17-2-142-147.

3. Khinchagov D. Ya., Rybka M. M. Central hemodynamics in coronary artery revascularization surgery without cardiopulmonary bypass. Clinical Physiology of Blood Circulation = Klinicheskaya Fiziologiya Krovoobrashcheniya. 2021; 3 (18): 201–211. (in Russ.). DOI: 10.24022/1814-6910-2021-18-3-201-211.

4. Yudin G. V., Aidashev Yu. Yu., Rybka M. M., Khinchagov D.Ya., Meshchanov B. V., Goncharov A. A. Central hemodynamics, oxygen consumption and oxygenating lung function in restrictive and liberal perioperative infusion in patients with acquired heart defects. Clinical Physiology of Blood Circulation = Klinicheskaya Fiziologiya Krovoobrashcheniya. 2021; 1 (18): 60–72. (in Russ.). DOI: 10.24022/1814-6910-2021-18-1-60-72.

5. Fu Y., He C., Bai Y., Zhang N., Zhao H. Value of the combination of renal resistive index and central venous pressure to predict septic shock induced acute kidney injury. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2020; 32 (4): 473–477. Chinese. DOI: 10.3760/cma.j.cn121430-20191014-00062. PMID: 32527356.

6. Shostak E., Shochat T., Manor O., Nahum E., Dagan O., Schiller O. Fluid Responsiveness predictability in immediate postoperative pediatric cardiac surgery. Is the old slandered central venous pressure back again? Shock. 2021; 56 (6): 927–932. DOI: 10.1097/SHK.0000000000001786. PMID: 33882511.

7. De Backer D., Vincent J. L. Should we measure the central venous pressure to guide fluid management? Ten answers to 10 questions. Crit Care. 2018; 22 (1): 43. DOI: 10.1186/s13054-018-1959-3. PMID: 29471884.

8. Monnet X., Shi R., Teboul J. L. Prediction of fluid responsiveness. What’s new? Ann Intensive Care. 2022; 12 (1): 46. DOI: 10.1186/s13613022-01022-8. PMID: 35633423.

9. Jozwiak M., Monnet X., Teboul J. L. Prediction of fluid responsiveness in ventilated patients. Ann Transl Med. 2018; 6 (18): 352. DOI: 10.21037/atm.2018.05.03. PMID: 30370279.

10. Smyotkin A., Hussein A., Zakharov V., Izotova N., Kuzikov V., Kirov M. Accuracy of noninvasive measurement of cardiac output based on the estimation of pulse wave transit time during coronary artery bypass grafting on a beating heart. Pathology of Blood Circulation and Cardiac Surgery = Patologiya Krovoobrashcheniya i Kardiokhirurgiya. 2016; 20 (2): 104–110. (in Russ.). DOI: 10.21688/16813472-2016-2-104-110.

11. Lee J. H., Kim E. H., Jang Y. E., Kim H. S., Kim J. T. Fluid responsiveness in the pediatric population. Korean J Anesthesiol. 2019; 72 (5): 429–440. DOI: 10.4097/kja.19305. Erratum in: Korean J Anesthesiol. 2021; 74 (2): 188. PMID: 31591858.

12. Kuzibaeva N. K. Prevalence of congenital heart defects in children. The Attending Physician = Lechashchiy Vrach. 2021; 9 (24): 48–52. (in Russ.). DOI: 10.51793/OS.2021.24.9.009.

13. Izotova N. N., Ilyina Ya. Yu., Fot E. V., Smyotkin A. A., Kuzkov V. V., Kirov M. Yu. Ultrasound monitoring of cardiac output after off-pump coronary artery bypass grafting. Russian Journal of Anaesthesiology and Reanimatology / Anesteziologiya i Reanimatologiya. 2019; (2): 48–55. (in Russ.). DOI: 10.17116/anaesthesiology201902148.

14. Patel N., Dodsworth M., Mills J. F. Cardiac output measurement in newborn infants using the ultrasonic cardiac output monitor: an assessment of agreement with conventional echocardiography, repeatability and new user experience. Arch Dis Child Fetal Neonatal Ed. 2011; 96 (3): F206–11. DOI: 10.1136/adc.2009.170704. PMID: 20605971.

15. Lekmanov A. U., Azovsky D. K., Pilyutik S. F. Comparison of Doppler ultrasonography and transpulmonary thermodilution when analyzing hemodynamics in the children with severe thermal injury. Messenger of Anesthesiology and Resuscitation = Vestnik Anesthesiologii i Reanimatologii. 2017; 14 (1): 42–50. (in Russ.). DOI: 10.21292/20785658-2017-14-1-42-50.

16. Boronina I. V., Alexandrovich Y. S., Shmakov A. N., Oshanova L. S. The possibility to use the ultrasound monitor of noninvasive control of hemodynamic in newborns. Russian Bulletin of Pediatric Surgery, Anesthesiology and Intensive Care = Rossiyskiy Vestnik Detskoy Khirurgii Anesteziologii i Reanimatologii. 2017; 7 (3): 69–73. (in Russ.). https://rps-journal.ru/jour/article/viewFile/336/335.

17. Ruste M., Jacquet-Lagrèze M., Fellahi J.-L. Advantages and limitations of noninvasive devices for cardiac output monitoring: a literature review. Curr Opin Crit Care. 2023; 29 (3): 259–267. DOI: 10.1097/MCC.0000000000001045.PMID: 37078642.

18. Zhang Y., Wang Y., Ji D., Qian J., Xu J., Shi J. Ultrasound cardiac output monitor and thermodilution for cardiac function monitoring in critical patients: a meta-analysis. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2019; 31 (12): 1462–1468. Chinese. DOI: 10.3760/cma.j.issn.2095-4352.2019.12.006. PMID: 32029030.

19. Cheng Y. W., Xu F., Li J. Identification of volume parameters monitored with a noninvasive ultrasonic cardiac output monitor for predicting fluid responsiveness in children after congenital heart disease surgery. Medicine (Baltimore). 2018; 97 (39): e12289. DOI: 10.1097/MD.0000000000012289. PMID: 30278500.

20. Sinitsky L., Walls D., Nadel S., Inwald D. P. Fluid overload at 48 hours is associated with respiratory morbidity but not mortality in a general PICU: retrospective cohort study. Pediatr Crit Care Med. 2015; 16 (3): 205–209. DOI: 10.1097/PCC.0000000000000318. PMID: 25581632.

21. Cardoso F. S., Pereira R., Laranjo A., Gamelas V., Bagulho L., Germano N., Karvellas C. J. Positive fluid balance was associated with mortality in patients with acute-on-chronic liver failure: a cohort study. J Crit Care. 2021; 63: 238–242. DOI: 10.1016/j.jcrc.2020.09.012. PMID: 32988683.

22. Argaiz E. R., Koratala A., Reisinger N. Comprehensive assessment of fluid status by point-of-care ultrasonography. Kidney 360. 2021; 2 (8): 1326–1338. DOI: 10.34067/KID.0006482020. PMID: 35369665.

23. Pliauckiene A., Liubsys A., Vankeviciene R., Usonis V. Ultrasonic cardiac output monitor provides effective non-invasive bedside measurements of neonatal cardiac output. J Clin Monit Comput. 2022; 36 (3): 803–807. DOI: 10.1007/s10877-021-00711-2. PMID: 33929641.

24. Koratala A., Ronco C., Kazory A. Diagnosis of fluid overload: from conventional to contemporary concepts. Cardiorenal Med. 2022; 12 (4): 141–154. DOI: 10.1159/000526902. PMID: 36096121.


Supplementary files

Review

For citations:


Soloviev N.A., Rybka M.M., Khinchagov J.Ya., Tsoi S.M., Gorbunov G.E., Dibin D.A., Kodzokov Z.A., Chomaeva M.Yu. Ultrasound-Based Cardiac Output Monitoring During Pediatric Open-Heart Surgery in Children. General Reanimatology. 2024;20(5):37-43. https://doi.org/10.15360/1813-9779-2024-5-37-43

Views: 877


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)