Prediction of Mortality in ICU Patients with SARS-CoV-2-Associated Pneumonia
https://doi.org/10.15360/1813-9779-2025-2-2472
Abstract
Aim: to determine the predictive value of selected routine clinical and laboratory parameters and to assess their prognostic significance for modeling mortality risk in intensive care unit (ICU) patients with SARS-CoV-2-associated pneumonia.
Materials and Methods. A retrospective case-control analysis of 73 medical records was performed. The control group included 20 records of surviving patients, while the primary group comprised 53 records of non-survivors treated between January and February 2022. The study parameters included leukocyte differential count, C-reactive protein (CRP), ferritin, blood oxygen saturation (SpO₂) via pulse oximetry, and the neutrophil ratio (NR) defined as the percentage of band neutrophils divided by the percentage of segmented neutrophils. The prognostic value of identified predictors was assessed using receiver operating characteristic (ROC) curve analysis. The area under the curve (AUC), 95% confidence interval (CI), sensitivity (Se), specificity (Sp), and cutoff point (CP) were determined, with CP defined as the predictor value yielding the highest sum of sensitivity and specificity.
Results. The most informative predictors of mortality in SARS-CoV-2-associated pneumonia were:
On the day of hospital admission: Ferritin levels (AUC=0.826; 95% CI: 0.717–0.905; P<0.001, CP≤0.473 mg/L; Se=78%; Sp=75%). On ICU day 1: Granulocyte count (GRA, AUC=0.711; 95% CI: 0.589–0.814; P<0.002, CP>6×10⁹/L; Se=94%; Sp=75%), NR (AUC=0.713; 95% CI: 0.541–0.850; P<0.016, CP>18; Se=91%; Sp=62%). On the final day in ICU: CRP (AUC=0.825; 95% CI: 0.522–0.973; P<0.013, CP>14 mg/L; Se=75%; Sp=100%); NR (AUC=0.862; 95% CI: 0.724–0.947; P<0.0001, CP>16; Se=94%; Sp=82%); SpO₂ (AUC=0.909; 95% CI: 0.819–0.963; P<0.0001, CP≤91%; Se=77%; Sp=100%); White blood cell count (WBC, AUC=0.833; 95% CI: 0.725–0.912; P<0.001, CP>12.2 × 10⁹/L; Se=80%; Sp=81%). Using a stepwise elimination approach, a mathematical model was proposed for predicting mortality probability (P) in SARS-CoV-2-associated pneumonia.
Conclusion. The most valuable prognostic model for predicting mortality risk is represented by the equation: P=1/(1+е–Z)×100% using routine laboratory parameters such as ferritin, neutrophil ratio and blood oxygen saturation. The model showed a sensitivity of 84.0% and a specificity of 94.1%.
About the Authors
P. N. SavilovRussian Federation
Pavel N. Savilov.
4 Polevaya Str., 392524 Pokrovo-Prigorodnoe, Tambov District, Tambov Region
S. S. Kurdyumova
Russian Federation
Sofya S. Kurdyumova.
93 Sovietskaya Str., 392000 Tambov
S. V. Shutova
Russian Federation
Svetlana V. Shutova.
93 Sovietskaya Str., 392000 Tambov
S. V. Buchneva
Russian Federation
Svetlana V. Buchneva.
4 Polevaya Str., 392524 Pokrovo-Prigorodnoe, Tambov District, Tambov Region
A. V. Baranov
Russian Federation
Alexander V. Baranov.
93 Sovietskaya Str., 392000 Tambov
References
1. Glybochko P. V., Fomin V. V., Moiseev S. V., Avdeev S. N., Yavorovsky A. G., Brovko M.Yu., Umbetova K. T., et al. Outcomes in patients with severe COVID-19 hospitalized for respiratory support in intensive care units. Clinical Pharmacology and Therapy = Klinicheskaya Farmakologiya i Terapiya. 2020; 3: 25–36. (In Russ.). DOI: 10.32756/0869-5490-2020-3-25-36.
2. Zhukova O. V., Kagramanyan I. N., Khokhlov A. L. Comparative analysis of drug efficacy in the treatment for COVID-19 severe forms, based on attribute-based statistic methods and analysis of drug interactions. Pharmacy and Pharmacology = Farmaciya i Farmakologiya. 2020; 8 (4): 316–324. (In Russ.). DOI: 10.19163/2307-9266-2020-8-5-316-324.
3. Savilov P. N. On the possibility of using hyperbaric oxygenation in the treatment of SARS-CoV-2-infected patients. Danish Scientific Journal. 2020; 1 (36): 43–49.
4. Henry B. M., Lippi G. Poor survival with extracorporeal membrane oxygenation in acute respiratory distress syndrome (ARDS) due to coronavirus disease 2019 (COVID-19): pooled analysis of early reports. J Crit Care. 2020; 58: 27–28. DOI: 10.1016/j.jcrc.2020.03.011. PMID: 32279018.
5. Shepetkska M. M., Iskrov I. A., Lendina I. Yu., Stoma I. O. Predictors of adverse COVID-19 outcomes in patients with oncohematological diseases. Health and Environmental Issues = Problemy Zdorovya i Ekologii. 2021; 18 (1): 27–34. (In Russ.). DOI: 10.51523/2708-6011.2021-18-1-4.
6. Kahathuduwa C. N., Dhanasekara C. S., Chin S. H. Case fatality rate in COVID-19: a systematic review and meta-analysis. MedRxiv. 2020. DOI: 10.1101/2020.04.01.20050476.
7. Khadzhieva M. B., Gracheva A. S., Ershov A. V., Chursinova Yu. V., Stepanov V. A., Avdeikina L. S., Grebenchikov O. A., et al. Biomarkers of air-blood barrier damage in COVID-19. General Reanimatology = Obshchaya Reanimatologiya. 2021; 17 (3): 16–31 (In Russ.&Eng.). DOI: 10.15360/1813-9779-2021-3-2-0.
8. Salukhov V. V., Gulyaev N. I., Dorokhina E. V. Assessment of systemic inflammatory reactions and coagulopathy against the background of hormone therapy in covid-associated lung damage. Medical Council = Meditsinskiy Sovet. 2020; (21): 230–237. (In Russ.). DOI: 10.21518/2079-701X-2020-21-230-23.
9. Ulu M., Kaya M., Tunc Y., Yildirim H., Halici A., Coskun A. Mortality prediction in the emergency service intensive care patients with possible COVID-19: a retrospective cross-sectional study. Ann Crit Care. 2024; 4: 157–166. DOI: 10.21320/1818-474X-2024-4-157-166.
10. Talko A. V., Nevzorova V. A., Ermolitskaya M. Z., Bondareva Zh. V. The possibilities of data mining methods for assessing the outcomes of COVID-19 in patients with diseases of the blood system. Bulletin Physiology and Pathology of Respiration = Bulleten Fiziologii i Patologii Dykhaniya. 2023; 88: 50−58. (In Russ.). DOI: 10.36604/1998-5029-2023-88-50-5.
11. Rubio-Rivas M., Mora-Luján J. M., Formiga F., Arévalo-Cañas C., Ramos J. M. L., Villalba García M. V., Fonseca Aizpuru E. M., et al. WHO ordinal scale and inflammation risk categories in COVID-19. Comparative study of the severity scales. J Gen Intern Med. 2022; 37 (8): 1980–1987. DOI: 10.1007/s11606-022-07511-7. PMID: 35396659.
12. Popadic V., Klasnja S l., Milic N., Rajovic N., Aleksic A., Milenkovic M., Crnokrak B., et al. Predictors of mortality in critically ill COVID-19 patients demanding high oxygen flow: a thin line between inflammation, cytokine storm, and coagulopathy. Oxid Med Cell Longev. 2021; 2021: 6648199. DOI: 10.1155/2021/6648199. PMID: 33968298.
13. Mareev V. Yu., Begrambekova Yu. L., Mareev Yu. V. How evaluate results of treatment in patients with COVID-19. Symptomatic Hospital and Outpatient Clinical Scale for COVID-119 (SHOCS–COVID). Cardiology = Kardiologiia. 2020; 60 (11): 35–41. (In Russ.).
14. Avramov A. A., Ivanov E. V., Melekhov A. V., Menzulin R. S., Nikiforchin A. I. Risk factors for COVID-19 adverse outcome in ICU settings of various types repurposed hospitals. General Reanimatology = Obshchaya Reanimatologiya. 2023; 19 (3): 20–27. (In Russ.&Eng.). DOI: 10.15360/1813-9779-2023-3-20-27.
15. Korabelnikov D. I., Magomedaliev M. O., Khoroshilov S. E. Prognostic value of cystatin C as a predictor of adverse out-come in severe pneumonia associated with COVID-19 General Reanimatology = Obshchaya Reanimatologiya. 2023; 19 (3): 4–11. (In Russ.&Eng.). DOI: 10.15360/1813-9779-2023-3-4-11.
16. Kuzovlev A. N., Ermokhina L. V., Melnikova N. S., Berikashvili L. B., Yadgarov M. Ya., Kadantseva K. K., Chaus N. I., et al. A nomogram for predicting hospital mortality in patients with COVID-19 admitted to the intensive care unit. Messenger of Anesthesiology and Resuscitation = Vestnik Anesthesiologii i Reanimatologii. 2022; 19 (1): 6–17. (In Russ.). DOI: 10.21292/2078-5658-2022-19-1-6-17.
17. Kuznik B. I., Smolyakov Yu. N., Khavinson V. H., Shapovalov K. G., Lukyanov S. A., Fefelova E. V., Kazantseva L. S. Neutrophils, lymphocytes and their ratio as predictors of outcome in patients with COVID-19. Pathological Physiology and Experimental Therapy = Patologicheskaya Fiziologiya i Eksperimental’naya Terapiya. 2021; 65 (4): 34–41. (In Russ.). DOI: 10.25557/0031-2991.2021.04.34-41.
18. Rybakova M. G., Karev V. E., Kuznetsova I. A. Anatomical pathology of novel coronavirus (COVID-19) infection. First impressions. Russian Journal of Archive of Pathology = Arkhiv Patologii. 2020; 82 (5): 5–15. (In Russ.). DOI: 10.17116/patol2020820515.
19. Vutha A. K., Patenaude R., Cole A., Kumar R., Kheir J. N., Polizzotti B. D. A microfluidic device for real-time on-demand intravenous oxygen delivery. Proc Natl Acad Sci USA. 2022; 119 (13): e2115276119. DOI: 10.1073/pnas.2115276119. PMID: 35312360.
20. Gusev E. Y. C-reactive protein: pathogenetic and diagnostic value. Ural Medical Journal = Uralskiy Meditsinskiy Zhurnal. (In Russ.).
21. Giamarellos-Bourboulis E. J., Netea M. G., Rovina N., Akinosoglou K., Antoniadou A., Antonakos N., Damoraki G., et al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe. 2020; 27 (6): 992–1000.e3. DOI: 0.1016/j.chom.2020.04.009. PMID: 32320677.
22. Gusev U. Yu., Chereshnev V. A. Systemic inflammation: theoretical and methodological approaches to description of general pathological process model. Part 1. General characteristics of the process. Pathological Physiology and Experimental Therapy = Patologicheskaya Fiziologiya i Eksperimental`naya Terapiya. 2012; 4: 3–14. (In Russ.).
23. Cheng L., Li H., Li L., Liu C., Yan S., Chen H., Li Y. Ferritin in the coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis. J Clin Lab Anal. 2020; 34 (10): е3618. DOI: 10.1002/jcla.23618. PMID: 33078400.
24. Polushin Yu. S., Shlyk I. V., Gavrilova E. G., Parshin E. V., Ginzburg А. M. The role of ferritin in assessing COVID-19 severity. Messenger of Anesthesiology and Resuscitation = Vestnik Anesthesiologii i Reanimatologii. 2021; 18 (4): 20–28. (In Russ.). DOI: 10.21292/2078-5658-2021-18-4-20-28.
25. Struk Yu. V., Savilov P. N., Yakusheva O. A., Vakhtina E. B., Efremova O. Yu., Perveeva I. M., Verikovskaja A. V. Application of hyperbaric oxygenation in patients with a new coronavirus infection COVID-19: prospective study. Marine Medicine = Morskaya Meditsina. 2023; 9 (2): 56–67. (In Russ.). DOI: 10.22328/2413-5747-2023-9-2-56-67.
26. Kuznetsov I. A., Potievskaya V. I., Kachanov I. V., Kuravleva O. O. The role of ferritin in human biological environments. Current Problems of Science and Education = Sovremenniye Problemy Nauki i Obrazovaniya. (electronic journal). 2017; 5. (In Russ.). https://science-education.ru/ru/article/view?id=27102.
27. Fetlam D. L., Chumachenko A. G., Vyazmina M. D., Moroz V. V., Kuzovlev A. N., Pisarev V. M. Prognostic markers of acute suppurative lung disease. General Reanimatology = Obshchaya Reanimatologiya. 2024; 20 (2): 14–28. (In Russ.&Eng.). DOI: 10.15360/1813-9779-2024-2-14-28.
28. Zhang H., Wang Y., Qu M., Li W., Wu D., Cata J. P., Miao C. Neutrophil, neutrophil extracellular traps and endothelial cell dysfunction in sepsis. Clin Transl Med. 2023; 13 (1): e1170. DOI: 10.1002/ctm2.1170. PMID: 36629024.
29. Kuznik B. I., Havinson V. H., Linkova N. S. COVID-19: impact on immunity, hemostasis and possible methods of correction. Successes of Physiological Sciences = Uspekhi Physiologicheskikh Nauk. 2020; 51 (4): 51–63. (In Russ.). DOI: 10.31857/S030-117982-0040037
Supplementary files
Review
For citations:
Savilov P.N., Kurdyumova S.S., Shutova S.V., Buchneva S.V., Baranov A.V. Prediction of Mortality in ICU Patients with SARS-CoV-2-Associated Pneumonia. General Reanimatology. 2025;21(2):4-15. https://doi.org/10.15360/1813-9779-2025-2-2472