Heterogeneity of NeuN Protein Distribution as a Marker of Morphological Personalization of Cerebral Cortex Neurons: an Experimental Study
https://doi.org/10.15360/1813-9779-2025-1-55-61
Abstract
Aim. To identify personalized morphological neuronal phenotypes based on the distribution pattern of the neuronal protein NeuN in the cerebral cortex layers.
Materials and Methods. A histologic study of the cerebral cortex was performed in rats (N=10). Tissue sections were stained with hematoxylin and eosin, and the neuronal nuclear protein NeuN was visualized by immunohistochemical staining. Analysis was performed by microscopy and image analysis software.
Results. NeuN immunohistochemical staining revealed distinct localization and intensity patterns within cortical neurons. Contrary to the definition of NeuN as a nuclear neuronal protein, its localization was observed in both the nucleus and cytoplasm in most neurons. The following neuronal phenotypes were identified based on NeuN staining patterns: 1) Neurons with stained nuclei but unstained cytoplasm; 2) Neurons with stained cytoplasm but unstained nuclei; 3) Neurons with stained nuclei and cytoplasm; 4) Fully stained neurons with no visible nuclei; 5) Neurons with stained processes (dendrites/axons). A significant difference was found between mean intensity of NeuN-positive neurons depending on the localization in the layers of the cerebral cortex.
Conclusion. Given the critical biological role of NeuN, the identified neuronal phenotypes based on NeuN localization warrant further research as they may reflect the functional states of neurons. The interpretation of the absence of NeuN staining as a marker of neuronal damage is not scientifically justified. Future studies using NeuN immunohistochemical staining should consider not only the total number of NeuN-positive neurons, but also their distinct phenotypes.
About the Authors
Arkady M. GolubevRussian Federation
Arkady M. Golubev
25 Petrovka Str., Bldg. 2, 107031 Moscow
Maxim A. Lyubomudrov
Russian Federation
Maksim A. Lyubomudrov
25 Petrovka Str., Bldg. 2, 107031 Moscow
Anastasia S. Babkina
Russian Federation
Anastasia S. Babkina
25 Petrovka Str., Bldg. 2, 107031 Moscow
Zoya I. Tsokolaeva
Russian Federation
Zoya I. Tsokolaeva
25 Petrovka Str., Bldg. 2, 107031 Moscow
References
1. Mullen R. J., Buck C. R., Smith A. M. NeuN, a neuronal specific nuclear protein in vertebrates. Development. 1992; 116 (1): 201–211. DOI: 10.1242/dev.116.1.201. PMID: 1483388.
2. Kim K. K., Adelstein R.S, Kawamoto S. Identification of neuronal nuclei (NeuN) as Fox-3, a new member of the Fox-1 gene family of splicing factors. J Biol Chem. 2009; 284 (45): 31052-31061. DOI: 10.1074/jbc.M109.052969 PMID: 19713214.
3. Alekseeva O. S., Guselnikova V. V., Beznin G. V., Korzhevsky D. E. [Prospects for the application of neun nuclear protein as a marker of the functional state of nerve cells in vertebrates. J Evol Biochem. Phys. 2015; 51: 357–369. DOI: 10.1134/S0022093015050014.
4. Shen C. C., Yang Y. C., Chiao M. T., Cheng W. Y., Tsuei Y. S., Ko J. L. Characterization of endogenous neural progenitor cells after experimental ischemic stroke. Curr Neurovasc Res. 2010; 7 (1): 6–14. DOI: 10.2174/156720210790820208.
5. Davoli M. A., Fourtounis J., Tam J., Xanthoudakis S., Nicholson D., Robertson G. S., Ng G. Y., Xu D. Immunohistochemical and biochemical assessment of caspase-3 activation and DNA fragmentation following transient focal ischemia in the rat. Neuroscience. 2002; 115 (1): 125–136. DOI: 10.1016/S0306-4522(02)00376-7. PMID: 12401327.
6. Sugawara T., Lewén A., Noshita N., Gasche Y., Chan P. H. Effects of global ischemia duration on neuronal, astroglial, oligodendroglial, and microglial reactions in the vulnerable hippocampal CA1 subregion in rats. J Neurotrauma. 2002; 19: 85–98. DOI: 10.1089/089771502753460268. PMID: 11852981.
7. Alekseeva O. S., Gusel’nikova V. V., Beznin G. V., Korzhevskii D. E. [Prospects of the nuclear protein NeuN application as an index of functional state of the vertebral nerve cells]. Zh Evol Biokhim Fiziol. 2015; 51 (5): 313–323. (in Russ.). PMID: 26856070.
8. Duan W., Zhang Y. P., Hou Z., Huang C., Zhu H., Zhang C. Q., Yin Q. Novel insights into NeuN: from neuronal marker to splicing regulator. Mol Neurobiol. 2016; 53: 1637–1647. DOI: 10.1007/s12035-015-9122-5. PMID: 25680637.
9. Kim K. K., Adelstein R. S., Kawamoto S. Identification of neuronal nuclei (NeuN) as Fox-3, a new member of the Fox-1 gene family of splicing factors. J Biol Chem. 2009; 284: 31052–31061. DOI: 10.1074/jbc.M109.052969. PMID: 19713214.
10. Unal-Cevik I., Kilinç M., Gürsoy-Ozdemir Y., Gurer G., Dalkara T. Loss of NeuN immunoreactivity after cerebral ischemia does not indicate neuronal cell loss: A cautionary note. Brain Res. 2004; 1015: 169–174. DOI: 10.1016/j.brainres.2004.04.032. PMID: 15223381.
11. Babkina A. S., Yadgarov M. Y., Lyubomudrov M. A., Ostrova I. V., Volkov A. V., Kuzovlev A. N., Grechko A. V., et al. Morphologic findings in the cerebral cortex in COVID-19: association of microglial changes with clinical and demographic variables. Biomedicines. 2023; 11 (5): 1407. DOI: 10.3390/biomedicines11051407. PMID: 37239078.
12. Lin Y. S., Kuo K. T., Chen S. K., Huang H. S. RBFOX3/NeuN is dispensable for visual function. PLoS One. 2018; 13 (2): e0192355. DOI: 10.1371/journal.pone.0192355. PMID: 29401485.
13. Maxeiner S., Glassmann A., Kao H. T., Schilling K. The molecular basis of the specificity and cross-reactivity of the NeuN epitope of the neuron-specific splicing regulator, Rbfox3. Histochem Cell Biol. 2014; 141: 43–55. DOI: 10.1007/s00418-013-1159-9. PMID: 24150744.
14. Van Nassauw L., Wu M., De Jonge F., Adriaensen D., Timmermans J. P. Cytoplasmic, but not nuclear, expression of the neuronal nuclei (NeuN) antibody is an exclusive feature of Dogiel type II neurons in the guinea-pig gastrointestinal tract. Histochem. Cell Biol. 2005; 124: 369–377. DOI: 10.1007/s00418-005-0019-7. PMID: 16049694.
15. Yu P., McKinney E. C., Kandasamy M. M., Albert A. L., Meagher R. B. Characterization of brain cell nuclei with decondensed chromatin. Dev Neurobiol. 2015; 75 (7): 738–756. DOI: 10.1002/dneu.22245. PMID: 25369517.
16. Azevedo F. A., Carvalho L. R., Grinberg L. T., Farfel J. M., Ferretti R. E., Leite R. E., Jacob Filho W., et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol. 2009; 513 (5): 532–541. DOI: 10.1002/cne.21974. PMID: 19226510.
17. Hernandez M. L., Chatlos T., Gorse K. M., Lafrenaye A. D. Neuronal membrane disruption occurs late following diffuse brain trauma in rats and involves a subpopulation of NeuN negative cortical neurons. Front Neurol. 2019; 10: 1238. DOI: 10.3389/fneur.2019.01238. PMID: 31824411.
18. Cannon J. R., Greenamyre J. T. NeuN is not a reliable marker of dopamine neurons in rat substantia nigra. Neurosci Lett. 2009; 464 (1): 14–17. DOI: 10.1016/j.neulet.2009.08.023. PMID: 19682546.
19. Unal-Cevik I., Kilinç M., Gürsoy-Ozdemir Y., Gurer G., Dalkara T. Loss of NeuN immunoreactivity after cerebral ischemia does not indicate neuronal cell loss: a cautionary note. Brain Res. 2004; 1015 (1–2): 169–174. DOI: 10.1016/j.brainres.2004.04.032. PMID: 15223381.
20. Yagi S., Splinter J. E.J., Tai D., Wong S., Wen Y., Galea L. A. M. Sex differences in maturation and attrition of adult neurogenesis in the hippocampus. eNeuro. 2020; 7 (4): ENEURO.0468-19.2020. DOI: 10.1523/ENEURO.0468-19.2020. PMID: 32586842.
21. Demarest T. G., Waite E. L., Kristian T., Puche A. C., Waddell J., McKenna M. C., Fiskum G. Sex-dependent mitophagy and neuronal death following rat neonatal hypoxia-ischemia. Neuroscience. 2016; 335: 103–113. DOI: 10.1016/j.neuroscience.2016.08.026. PMID: 27555552.
22. Sugiura A., Shimizu T., Kameyama T., Maruo T., Kedashiro S., Miyata M., Mizutani K., et al. Identification of Sox2 and NeuN double-positive cells in the mouse hypothalamic arcuate nucleus and their reduction in number with aging. Front Aging Neurosci. 2021; 12: 609911. DOI: 10.3389/fnagi.2020.609911. PMID: 33776740.
23. Luijerink L., Waters K. A., Machaalani R. Immunostaining for NeuN does not show all mature and healthy neurons in the human and pig brain: focus on the hippocampus. Appl Immunohistochem Mol Morphol. 2021; 29: e46–e56. DOI: 10.1097/PAI.0000000000000925. PMID: 33710124.
24. McPhail L. T., McBride C. B., McGraw J., Steeves J. D., Tetzlaff W. Axotomy abolishes NeuN expression in facial but not rubrospinal neurons. Exp Neurol. 2004; 185 (1): 182–190. DOI: 10.1016/j.expneurol.2003.10.001. PMID: 14697329.
25. Lavezzi A. M., Corna M. F., Matturri L. Neuronal nuclear antigen (NeuN): a useful marker of neuronal immaturity in sudden unexplained perinatal death. J Neurol Sci. 2013; 329 (1–2): 45–50. DOI: 10.1016/j.jns.2013.03.012. PMID: 23570982.
26. Anderson M. B., Das S., Miller K. E. Subcellular localization of neuronal nuclei (NeuN) antigen in size and calcitonin gene-related peptide (CGRP) populations of dorsal root ganglion (DRG) neurons during acute peripheral inflammation. Neurosci Lett. 2021: 24; 760: 135974. DOI: 10.1016/j.neulet.2021.135974. PMID: 34146639.
Review
For citations:
Golubev A.M., Lyubomudrov M.A., Babkina A.S., Tsokolaeva Z.I. Heterogeneity of NeuN Protein Distribution as a Marker of Morphological Personalization of Cerebral Cortex Neurons: an Experimental Study. General Reanimatology. 2025;21(1):55-61. https://doi.org/10.15360/1813-9779-2025-1-55-61