Changes in Neutrophil Membranes Induced by Plasma from Newborns with Infection
https://doi.org/10.15360/1813-9779-2025-3-2568
Abstract
This study aimed to identify neutrophil membrane characteristics that could serve as clinical biomarkers for the development of infectious complications in newborns.
Materials and Methods. Neutrophils isolated from healthy donors were used as a model system. The cells were incubated with plasma samples (S) isolated from blood of newborns categorized into three groups: apparently healthy (normal) (NS) (N=6), with localized infection (LIS) (N=7), and with generalized infection (GIS) (N=8). We assessed cellular morphology and membrane roughness before and after stimulation with phorbol 12-myristate 13-acetate (PMA) using fluorescence and atomic force microscopy. We quantified nuclear and membrane surface areas, the intensity of neutrophil extracellular trap (NET) formation, and membrane arithmetic average roughness (Ra).
Results. A standardized protocol for neutrophil preparation and evaluation was developed. Optimal incubation conditions were established; 1% bovine serum albumin (BSA) yielded minimal background activation. Dose-dependent activation of neutrophils by PMA was observed in the presence of 1% plasma. PMA stimulation significantly increased nuclear area (P0.001), membrane area (P0.001), and Ra (P0.001), regardless of plasma sample group. The most significant changes occurred in neutrophils incubated with plasma from the GIS group. Generalized infection was associated with enhanced NET activation, which may contribute to the pathogenesis of thrombotic complications in neonatal sepsis.
Conclusion. Microscopy-based neutrophil characteristics are promising biomarkers for evaluating infection including sepsis in newborns.
About the Authors
V. A. InozemtsevRussian Federation
Vladimir A. Inozemtsev
25 Petrovka Str., Bldg. 2, 107031 Moscow
I. V. Obraztsov
Russian Federation
Igor V. Obraztsov
29 Shmitovsky pr., 123317 Moscow
E. A. Sherstyukova
Russian Federation
Ekaterina A. Sherstyukova
25 Petrovka Str., Bldg. 2, 107031 Moscow
S. S. Kandrashina
Russian Federation
Snezhanna S. Kandrashina
25 Petrovka Str., Bldg. 2, 107031 Moscow
M. A. Shvedov
Russian Federation
Mikhail A. Shvedov
25 Petrovka Str., Bldg. 2, 107031 Moscow
M. E. Dokukin
Russian Federation
Maxim E. Dokukin
25 Petrovka Str., Bldg. 2, 107031 Moscow
V. A. Sergunova
Russian Federation
Viktoria A. Sergunova
25 Petrovka Str., Bldg. 2, 107031 Moscow
References
1. Liu D., Huang S. Y., Sun J. H., Zhang H. C., Cai Q. L., Gao C., Li L., et al. Sepsis-induced immunosuppression: mechanisms, diagnosis and current treatment options. Mil Med Res. 2022; 9 (1): 56. DOI: 10.1186/s40779-022-00422-y. PMID: 36209190.
2. Ponasenko A. V., Sinitsky M. Y., Khutornaya M. V., Barabash O. L. Genetic markers of systemic inflammatory response in cardiac surgery (Review). Gen Reanimatol = Obshchaya Reanimatologiya. 2017; 13 (6): 48–59. (in Russ.&Eng.). DOI: 10.15360/1813-9779-2017-6-48-59.
3. Mellhammar L., Wollter E., Dahlberg J., Donovan B., Olséen C.-J., Wiking P. O., Rose N., et al. Estimating sepsis incidence using administrative data and clinical medical record review. JAMA Netw Open. 2023; 6 (8): e2331168. DOI: 10.1001/jamanetworkopen.2023.31168. PMID: 37642964.
4. Obraztsov I. V., Ryabov A.Yu., Tsuranova N. S., Balykova E. V., Paramonov A. I. Neutrophil function in patients with postsugery infectious septic complications. Russian Journal of Immunology = Ross Immunol Zhurnal. 2019; 22 (4): 1393–1401. (in Russ.). DOI: 10.31857/S102872210007042-1.
5. Celik I. H., Hanna M., Canpolat F. E., Mohan Pammi. Diagnosis of neonatal sepsis: the past, present and future. Pediatr Res. 2022; 91 (2): 337–350. DOI: 10.1038/s41390-021-01696-z. PMID: 34728808.
6. Glaser M. A., Hughes L. M., Jnah A., Newberry D. Neonatal sepsis: a review of pathophysiology and current management strategies. Adv Neonatal Care. 2021; 21 (1): 49–60. DOI: 10.1097/ANC.0000000000000769. PMID: 32956076.
7. Obraztsov I. V., Zhirkova Y. V., Chernikova E. V., Krapivkin A. I., Brunova O. Y., Abdraisova A. T., Davydova N. V. Feasibility of phagocytes functional testing in neonatal sepsis diagnostics. Russian Bulletin of Perinatology and Pediatrics = Rossiyskiy Vestnik Perinatologii i Pediatrii. 2023; 68 (1): 24–29. (in Russ.). DOI: 10.21508/1027-4065-2023-68-1-24-29.
8. Ohbuchi A., Kono M., Kitagawa K., Takenokuchi M., Imoto S., Saigo K. Quantitative analysis of hemin-induced neutrophil extracellular trap formation and effects of hydrogen peroxide on this phenomenon. Biochem Biophys Reports. 2017; 11: 147–153. DOI: 10.1016/j.bbrep.2017.07.009. PMID: 28955779.
9. Parker H., Winterbourn C. C. Reactive oxidants and myeloperoxidase and their involvement in neutrophil extracellular traps. Front Immunol. 2012; 3: 424. DOI: 10.3389/fimmu.2012.00424. PMID: 23346086.
10. Zhang J., Shao Y., Wu J., Zhang J., Xiong X., Mao J.,Wei Y., et al. Dysregulation of neutrophil in sepsis: recent insights and advances. Cell Commun Signal. 2025; 23 (1): 87. DOI: 10.1186/s12964-025-02098-y. PMID: 39953528.
11. Sergunova V., Inozemtsev V., Vorobjeva N., Kozlova E., Sherstyukova E., Lyapunova S., Chernysh A. Morphology of neutrophils during their activation and NETosis: atomic force microscopy study. Cells. 2023; 12 (17): 2199. DOI: 10.3390/cells12172199. PMID: 37681931.
12. Dewitt S., Hallett M. Leukocyte membrane «expansion»: a central mechanism for leukocyte extravasation. J Leukoc Biol. 2007; 81 (5): 1160–4. DOI: 10.1189/jlb.1106710. PMID: 17360954.
13. Hallett M. B., Dewitt S. Ironing out the wrinkles of neutrophil phagocytosis. Trends Cell Biol. 2007; 17 (5): 209–14. DOI: 10.1016/j.tcb.2007.03.002. PMID: 17350842.
14. Grebenchikov O. A., Kasatkina I. S., Kadantseva K. K., Meshkov M. A., Bayeva A. A. The effect of lithium chloride on neutrophil activation on exposure to serum of patients with septic shock. Gen Reanimatol = Obshchaya Reanimatologiya. 2020; 16 (5): 45–55. (in Russ.&Eng.). DOI: 10.15360/1813-9779-2020-5-45-55.
15. Obraztsov I. V., Godkov M. A., Kulabukhov V. V., Vladimirova G. A., Izmailov D. Y., Proskurnina E. V. Functional activity of neutrophils in burn sepsis. Gen Reanimatol = Obshchaya Reanimatologiya. 2017; 13 (2): 40–51. (in Russ.&Eng.). DOI: 10.15360/1813-9779-2017-2-40-51.
16. Starostin D. O., Kuzovlev A. N., Dolgikh V. T., Grebenchikov O. A., Polyakov P. A., Grechko A. V. Influence of sevoflurane on neutrophils in patients with sepsis. Russ J Anesthesiol Reanimatol. (in Russ.&Eng.). 2024; (5): 50. DOI: 10.17116/anaesthesiology202405150.
17. Liu S., Han Y., Kong L., Wang G., Ye Z. Atomic force microscopy in disease‐related studies: exploring tissue and cell mechanics. Microsc Res Tech. 2024; 87 (4): 660–684. DOI: 10.1002/jemt.24471. PMID: 38063315.
18. Dumitru A. C., Koehler M. Recent advances in the application of atomic force microscopy to structural biology. J Struct Biol. 2023; 215 (2): 107963. DOI: 10.1016/j.jsb.2023.107963. PMID: 37044358.
19. Kerdegari S., Canepa P., Odino D., Oropesa-Nuñez R., Relini A., Cavalleri O., Canale C. Insights in cell biomechanics through atomic force microscopy. Materials (Basel). 2023; 16 (8): 2980. DOI: 10.3390/ma16082980. PMID: 37109816.
20. Sokolov I., Iyer S., Woodworth C. D. Recovery of elasticity of aged human epithelial cells in vitro. Nanomedicine. 2006; 2 (1): 31–36. DOI: 10.1016/j.nano.2005.12.002. PMID: 17292113. 21. Pérez-Domínguez S., Kulkarni S. G., Rianna C., Radmacher M. Atomic force microscopy for cell mechanics and diseases. Neuroforum. 2020; 26 (2): 101–109. DOI: 10.1515/nf-2020-0001.
21. Makarova N., Kalaparthi V., Seluanov A., Gorbunova V., Dokukin M. E., Sokolov I. Correlation of cell mechanics with the resistance to malignant transformation in naked mole rat fibroblasts. Nanoscale. 2022; 14 (39): 14594–14602. DOI: 10.1039/D2NR01633h. PMID: 36155714.
22. Burn G. L., Foti A., Marsman G., Patel D. F., Zychlinsky A. The Neutrophil. Immunity. 2021; 54 (7): 1377–1391. DOI: 10.1016/j.immuni.2021.06.006. PMID: 34260886.
23. Tilley D. O., Abuabed U., Arndt U. Z., Schmid M., Florian S., Jungblut P. R., Brinkmann V., et al. Histone H3 clipping is a novel signature of human neutrophil extracellular traps. Elife. 2022; 11: e68283. DOI: 10.7554/eLife.68283. PMID: 36282064.
24. Thiam H. R., Wong S. L., Qiu R., Kittisopikul M., Vahabikashi A., Goldman A. E., Goldman R. D., et al. NETosis proceeds by cytoskeleton and endomembrane disassembly and PAD4-mediated chromatin decondensation and nuclear envelope rupture. Proc Natl Acad Sci. 2020; 117 (13): 7326–7337. DOI: 10.1073/pnas.1909546117. PMID: 32170015.
25. Inozemtsev V., Sergunova V., Vorobjeva N., Kozlova E., Sherstyukova E., Lyapunova S., Chernysh A. Stages of NETosis Development upon Stimulation of Neutrophils with Activators of Different Types. Int J Mol Sci. 2023; 24 (15): 12355. DOI: 10.3390/ijms241512355. PMID: 37569729.
26. Wei M., Zhang Y., Wang Y., Liu X., Li X., Zheng X. Employing atomic force nicroscopy (AFM) for microscale investigation of interfaces and interactions in membrane fouling processes: new perspectives and prospects. Membranes (Basel). 2024; 14 (2): 35. DOI: 10.3390/membranes14020035. PMID: 38392662.
27. Mironov V. L. Fundamentals of scanning probe microscopy. Nizhny Novgorod: Russian Academy of Sciences, Institute of Physics of Microstructures; 2004: 110. (in Russ.).
28. Schneider C. A., Rasband W. S., Eliceiri K. W. NIH Image to imageJ: 25 years of image analysis. Nat Methods. 2012; 9 (7): 671–675. DOI: 10.1038/nmeth.2089. PMID: 22930834.
29. Zhou Y., Xu Z., Liu Z. Impact of neutrophil extracellular traps on thrombosis formation: new findings and future perspective. Front Cell Infect Microbiol. 2022; 12: 910908. DOI: 10.3389/fcimb.2022.910908. PMID: 35711663.
Supplementary files
Review
For citations:
Inozemtsev V.A., Obraztsov I.V., Sherstyukova E.A., Kandrashina S.S., Shvedov M.A., Dokukin M.E., Sergunova V.A. Changes in Neutrophil Membranes Induced by Plasma from Newborns with Infection. General Reanimatology. 2025;21(3):41-50. (In Russ.) https://doi.org/10.15360/1813-9779-2025-3-2568