Роль инфекционных заболеваний нижних дыхательных путей в патогенезе ишемического инсульта (обзор)
https://doi.org/10.15360/1813-9779-2025-5-2598
Аннотация
Цель: обоснование патогенеза ишемического инсульта при инфекционных заболеваниях нижних дыхательных путей.
Материал и методы. Провели поиск оригинальных исследований, клинических сообщений, обзорных и редакционных статей, комментариев и кратких сообщений, опубликованных до 25 июня 2025 г. в базе PubMed. Дополнительные источники, которые не выявили с помощью поиска в первичной базе данных, анализировали после изучения списков литературы по отобранным статьям. Статьи отбирали, исходя из соответствия названия и аннотации цели настоящего обзора. В анализ включили данные 160 источников.
Результаты. Выделили и подробно рассмотрели механизмы развития ишемического инсульта при респираторных инфекциях: 1) активацию свертывающей системы крови и нарушение естественных антикоагулянтных и фибринолитических механизмов; 2) взаимодействие системы гемостаза с врожденным иммунитетом; 3) воздействие возбудителей инфекции на прогрессирование атеросклероза и стабильность атеросклеротической бляшки; 4) формирование тромбоэмболов в легочных венах.
Заключение. Как бактериальная, так и вирусная инфекция могут инициировать прокоагулянтное состояние, опосредованное тканевым фактором, фактором фон Виллебранда, активацией тромбоцитов, нейтрофильных внеклеточных ловушек и снижением активности эндогенных антикоагулянтов. Инфекционный процесс, локализованный в легких, характеризующийся повреждениями эндотелия сосудов легких, альвеолоцитов, внутриальвеолярным отложением фибрина, отеком, клеточной инфильтрацией, в совокупности с нарушениями гемостаза создает условия для формирования тромбов в сосудах легких. Таким образом, легочные вены и венулы могут являться источником тромбоэмболии сосудов головного мозга. Этот механизм развития тромбоэмболического инсульта во многом объясняет случаи острых нарушений мозгового кровообращения у пациентов с инфекцией нижних дыхательных путей без сердечно-сосудистых факторов риска. Другой механизм ишемического инсульта связан с прямым или опосредованным воздействием патогенов на стабильность атеросклеротических бляшек в сосудах головного мозга, что в совокупности с системным прокоагулянтным дисбалансом, приводит к формированию атеротромбоза. Учитывая обоснованную патогенетическую связь острых инфекционных заболеваний легких с кардиоэмболическим и атеротромботическим инсультами, необходима клиническая настороженность относительно острых нарушений мозгового кровообращения в тактике ведения таких пациентов.
Ключевые слова
Об авторе
А. С. БабкинаРоссия
Анастасия Сергеевна Бабкина
10703, г. Москва, ул. Петровка, д. 25, стр. 2
Список литературы
1. Miller E. C., Elkind M. S. V. Infection and stroke: an update on recent progress. Curr Neurol Neurosci Rep. 2016; 16 (1): 2. DOI: 10.1007/s11910-015-0602-9. PMID: 26677196.
2. Collins S. Excess mortality from causes other than influenza and pneumonia during influenza epidemics. Public Health Rep. 1932; 47: 2159–2189.
3. Meier C. R., Jick S. S., Derby L. E., Vasilakis C., Jick H., Meier C., Jick S., et al. Acute respiratory-tract infections and risk of first-time acute myocardial infarction. Lancet. 1998; 351 (9114): 1467–1471. DOI: 10.1016/S0140-6736(97)11084-4. PMID: 9605802.
4. Clayton T. C., Capps N. E., Stephens N.G., Wedzicha J. A., Meadw T. W. Recent respiratory infection and the risk of myocardial infarction. Heart. 2005; 91 (12): 1601–1602. DOI: 10.1136/hrt.2004.046920. PMID: 16287745.
5. Clayton T. C., Thompson M., Meade T. W. Recent respiratory infection and risk of cardiovascular disease: case-control study through a general practice database. Europ Heart J. 2007; 29 (1): 96–103. DOI: 10.1093/eurheartj/ehm516. PMID: 18063596
6. Fu M., Wong K. S., Lam W. W.M., Wong G. W. K. Middle cerebral artery occlusion after recent mycoplasma pneumoniae infection. J Neurol Sc. 1998; 157 (1): 113–115. DOI: 10.1016/S0022-510X(98)00074-4. PMID: 9600687.
7. Fullerton H. J., Hills N. K., Elkind M. S.V., Dowling M. M., Wintermark M., Glaser C. A., Tan M., et al. Infection, vaccination, and childhood arterial ischemic stroke: Results of the VIPS study. Neurol. 2015; 85 (17): 1459–66. DOI: 10.1212/WNL.0000000000002065. PMID: 26423434.
8. Amlie-Lefond C., Fullerton H. Rashes, sniffles, and stroke: a role for infection in ischemic stroke of childhood. Infect Disord Drug Targets. 2010; 10 (2): 67–75. DOI: 10.2174/187152610790963465. PMID: 20166975.
9. Kutleša M., Tešović G., Knezović I., Miše B., Višković K., Barišić N. Ischemic stroke associated with adenoviral infection in a 4-year-old boy. Wien Klin Wochenschr. 2009; 121 (23–24): 776–779. DOI: 10.1007/s00508-009-1286-4. PMID: 20047116.
10. Cao Q., Yang F., Zhang J., Liang H., Liu X., Wang H. Features of childhood arterial ischemic stroke in China. Fetal Pediatr Pathol. 2019; 38 (4): 317–25. DOI: 10.1080/15513815.2019.1588438. PMID: 30890011.
11. Grau A. J., Buggle F., Hacke W. Infektionskrankheiten als ursache und risikofaktor für zerebrovaskuläre ischämien. [Infectious diseases as a cause and risk factor for cerebrovascular ischemia]. Nervenarzt. 1996; 67 (8): 639–49. DOI: 10.1007/s001150050036. PMID: 8805109.
12. Grau A. J., Buggle F., Heindl S., Steichen-Wiehn C., Banerjee T., Maiwald M., Rohlfs M., et al. Recent infection as a risk factor for cerebrovascular ischemia. Stroke. 1995; 26 (3): 373–9. DOI: 10.1161/01.STR.26.3.373. PMID: 7886709.
13. Boehme A. K., Luna J., Kulick E. R., Kamel H., Elkind M. S. V. Influenza‐like illness as a trigger for ischemic stroke. Ann Clin Transl Neurol. 2018; 5 (4): 456–463. DOI: 10.1002/acn3.545. PMID: 29687022.
14. Merkler A. E., Parikh N. S., Mir S., Gupta A., Kamel H., Lin E., Lantos J., et al. Risk of ischemic stroke in patients with COVID-19 versus patients with influenza. JAMA Neurol. 2020. DOI: 10.1101/2020.05.18.20105494. PMID: 32614385.
15. Ward A., Sarraju A., Lee D., Bhasin K., Gad S., Beetel R., Chang S., et al. COVID-19 is associated with higher risk of venous thrombosis, but not arterial thrombosis, compared with influenza: Insights from a large US cohort. PLoS ONE. 2022; 17 (1): e0261786. DOI: 10.1371/journal.pone.0261786. PMID: 35020742.
16. Luo W., Liu X., Bao K., Huang C. Ischemic stroke associated with COVID-19: a systematic review and meta-analysis. J Neurol. 2022; 269 (4): 1731–40. DOI: 10.1007/s00415-021-10837-7. PMID: 34652503.
17. Babkina A. S., Yadgarov M.Ya., Lyubomudrov M. A., Ostrova I. V., Volkov A. V., Kuzovlev A. N., Grechko A. V., et al. Morphologic findings in the cerebral cortex in COVID-19: association of microglial changes with clinical and demographic variables. Biomedicines. 2023; 11 (5): 1407. DOI: 10.3390/biomedicines11051407. PMID: 37239078.
18. Babkina A. S., Yadgarov M. Y., Volkov A. V., Kuzovlev A. N., Grechko A. V., Golubev A. M. Spectrum of thrombotic complications in fatal cases of COVID-19: focus on pulmonary artery thrombosis in situ. Viruses. 2023; 15 (8): 1681. DOI: 10.3390/v15081681. PMID: 37632023.
19. De Souza A. M. L. B., De Araújo E. F., Junior N. C., Raimundo A. C. S., Pereira A. C., De Castro Meneghim M. Association between SARS-CoV-2 and stroke: perspectives from a metaumbrella-review. BMC Neurol. 2025; 25 (1): 97. DOI: 10.1186/s12883-025-04041-7. PMID: 40055630.
20. Wang J. E.-H., Tsai S.-J., Wang Y.-P., Chen T.-J., Wang T.-J., Chen M.-H. Bacterial pneumonia and stroke risk: a nationwide longitudinal follow-up study. Curr Neurovasc Res. 2023; 20 (5): 578–85. DOI: 10.2174/0115672026280736240108093755. PMID: 38288840.
21. Zurrú M. C., Alonzo C., Brescacín L., Romano M., Cámera L. A., Waisman G., Cristiano E., et al. Recent respiratory infection predicts atherothrombotic stroke: case–control study in a Buenos Aires healthcare system. Stroke. 2009; 40 (6): 1986–1990. DOI: 10.1161/STROKEAHA.108.535559. PMID: 19359651.
22. Paganini-Hill A., Lozano E., Fischberg G., Barreto M. P., Rajamani K., Ameriso S. F., Heseltine P. N. R., et al. Infection and risk of ischemic stroke: differences among stroke subtypes. Stroke. 2003; 34 (2): 452–457. DOI: 10.1161/01.STR.0000053451.28410.98. PMID: 12574559.
23. Taylor L. D., Ameen O. S., Zaharie S.-D. Complete clinicopathological case report of a young patient dying of COVID-19-related stroke. Am J Forensic Med Pathol. 2021; 42 (2): 160–163. DOI: 10.1097/PAF.0000000000000668.
24. Beach T. G., Sue L. I., Intorcia A. J., Glass M. J., Walker J. E., Arce R., Nelson C. M., et al. Acute brain ischemia, infarction and hemorrhage in subjects dying with or without autopsy-proven acute pneumonia MedRxiv [Preprint.]. 2021: 22.21254139. DOI: 10.1101/2021.03.22.21254139. PMID: 33791728.
25. Арипов А. Н., Каюмов У. К., Иноятова Ф. Х., Хидоятова М. Р. Роль легких в системе гемостаза (обзор литературы). Клиническая лабораторная диагностика. 2021; 66 (7): 411–416. DOI: 10.51620/0869-2084-2021-66-7-411-416. PMID: 34292683.
26. Bos L. D. J., Ware L. B. Acute respiratory distress syndrome: causes, pathophysiology, and phenotypes. Lancet. 2022; 400 (10358): 1145–56. DOI: 10.1016/S0140-6736(22)01485-4. PMID: 36070787.
27. Stroo I., Ding C., Novak A., Yang J., Roelofs J. J. T. H., Meijers J. C. M., Revenko A. S., et al. Inhibition of the extrinsic or intrinsic coagulation pathway during pneumonia-derived sepsis. Am J Physiol Lung Cell Mol Physiol. 2018; 315 (5): L799–809. DOI: 10.1152/ajplung.00014.2018. PMID: 30136609.
28. Horan J. T., Francis C. W., Falsey A. R., Kolassa J., Smith B. H., Hall W. J. Prothrombotic changes in hemostatic parameters and C-reactive protein in the elderly with winter acute respiratory tract infections. Thromb Haemost. 2001; 85 (2): 245–249. PMID: 11246541.
29. Van Wissen M., Keller T. T., Van Gorp E. C. M., Gerdes V. E. A., Meijers J. C. M., Van Doornum G. J. J., Büller H. R., et al. Acute respiratory tract infection leads to procoagulant changes in human subjects. J Thromb Haemost. 2011; 9 (7): 1432–1434. DOI: 10.1111/j.1538-7836.2011.04340.x. PMID: 21605331.
30. Milbrandt E. B., Reade M. C., Lee M., Shook S. L., Angus D. C., Kong L., et al., GenIMS Investigators. Prevalence and significance of coagulation abnormalities in community-acquired pneumonia. Mol Med. 2009; 15 (11–12): 438–45. DOI: 10.2119/molmed.2009.00091. PMID: 19753144.
31. Tan C. W., Wong W. H., Cheen M. H. H., Chu Y. M. H., Lim S. S., Ng L. C. K., Yeo D. G. D., et al. Assessment of aPTT-based clot waveform analysis for the detection of haemostatic changes in different types of infections. Sci Rep. 2020; 10 (1): 14186. DOI: 10.1038/s41598-020-71063-1. PMID: 32843693.
32. Gattinoni L., Chiumello D., Caironi P., Busana M., Romitti F., Brazzi L., Camporota L. COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med. 2020; 46 (6): 1099–1102. DOI: 10.1007/s00134-020-06033-2. PMID: 32291463.
33. Mattila K. J., Valtonen V. V., Nieminen M. S., Asikainen S. Role of infection as a risk factor for atherosclerosis, myocardial infarction, and stroke. Clin Infect Dis. 1998; 26 (3): 719–734. DOI: 10.1086/514570. PMID: 9524851.
34. Tripodi A., Rossi S. C., Clerici M., Merati G., Scalambrino E., Mancini I., Baronciani L., et al. Pro-coagulant imbalance in patients with community acquired pneumonia assessed on admission and one month after hospital discharge. Clin Chem Lab Med (CCLM). 2021; 59 (10): 1699–708. DOI: 10.1515/cclm-2021-0538. PMID: 34192831.
35. Eilertsen K.-E., Østerud B. Tissue factor: (patho)physiology and cellular biology. Blood Coagul Fibrinolysis. 2004; 15 (7): 521–38. DOI: 10.1097/00001721-200410000-00001. PMID: 15389118.
36. Musher D. M., Rueda A. M., Kaka A. S., Mapara S. M. The association between pneumococcal pneumonia and acute cardiac events. Clin Infect Dis. 2007; 45 (2): 158–65. DOI: 10.1086/518849. PMID: 17578773.
37. Pieralli F., Vannucchi V., Nozzoli C., Augello G., Dentali F., De Marzi G., Uomo G., et al. Acute cardiovascular events in patients with community acquired pneumonia: results from the observational prospective FADOI-ICECAP study. BMC Infect Dis. 2021; 21 (1): 116. DOI: 10.1186/s12879-021-05781-w. PMID: 33494707.
38. Africano H. F., Serrano-Mayorga C. C., Ramirez-Valbuena P. C., Bustos I. G., Bastidas A., Vargas H. A., Gómez S., et al. Major adverse cardiovascular events during invasive pneumococcal disease are serotype dependent. Clin Infect Dis. 2021; 72 (11): e711–9. DOI: 10.1093/cid/ciaa1427. PMID: 32964223.
39. Guan X. R., Jiang L. X., Ma X. H. Relationship between Mycoplasma pneumoniae infection and acute myocardial infarction. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2008; 20 (4): 236–237. (Chinese). PMID: 18419961.
40. Momiyama Y., Ohmori R., Taniguchi H., Nakamura H., Ohsuzu F. Association of mycoplasma pneumoniae infection with coronary artery disease and its interaction with chlamydial infection. Atherosclerosis. 2004; 176 (1): 139–144. DOI: 10.1016/j.atherosclerosis.2004.04.019. PMID: 15306186.
41. Long B., Brady W. J., Koyfman A., Gottlieb M. Cardiovascular complications in COVID-19. Am J Emerg Med. 2020; 38 (7): 1504–7. DOI: 10.1016/j.ajem.2020.04.048. PMID: 32317203.
42. Del Prete A., Conway F., Della Rocca D. G., Biondi-Zoccai G., De Felice F., Musto C., Picichè M., et al. COVID-19, acute mmyocardial injury, and infarction. Card Electrophysiol Clin. 2022; 14 (1): 29–39. DOI: 10.1016/j.ccep.2021.10.004. PMID: 35221083.
43. Josй R. J., Williams A., Manuel A., Brown J. S., Chambers R. C. Targeting coagulation activation in severe COVID-19 pneumonia: lessons from bacterial pneumonia and sepsis. Eur Respir Rev. 2020; 29 (157): 200240. DOI: 10.1183/16000617.0240-2020. PMID: 33004529.
44. Coughlin S. R. Thrombin signalling and protease-activated receptors. Nature. 2000; 407 (6801): 258–64. DOI: 10.1038/35025229. PMID: 11001069.
45. Bastarache J. A., Wang L., Geiser T., Wang Z., Albertine K. H., Matthay M. A., Ware L. B. The alveolar epithelium can initiate the extrinsic coagulation cascade through expression of tissue factor. Thorax. 2007; 62 (7): 608–16. DOI: 10.1136/thx.2006.063305. PMID: 17356058.
46. Levi M., van der Poll T., Schultz M. New insights into pathways that determine the link between infection and thrombosis. Neth J Med. 2012; 70 (3): 114–120. PMID: 22516575.
47. Rijneveld A. W., Weijer S., Bresser P., Florquin S., Vlasuk G. P., Rote W. E., Spek C. A., et al. Local activation of the tissue factor-factor VIIa pathway in patients with pneumonia and the effect of inhibition of this pathway in murine pneumococcal pneumonia. Crit Care Med. 2006; 34 (6): 1725–1730. DOI: 10.1097/01.CCM.0000218807.20570.C2. PMID: 16625114.
48. Beutler B., Rietschel E. Th. Innate immune sensing and its roots: the story of endotoxin. Nat Rev Immunol. 2003; 3 (2): 169–76. DOI: 10.1038/nri1004. PMID: 12563300.
49. Weidenmaier C., Peschel A. Teichoic acids and related cell-wall glycopolymers in gram-positive physiology and host interactions. Nat Rev Microbiol. 2008; 6 (4): 276–287. DOI: 10.1038/nrmicro1861. PMID: 18327271.
50. Hoogerwerf J. J., De Vos A. F., Bresser P., Van Der Zee J. S., Pater J. M., De Boer A., Tanck M., et al. Lung inflammation induced by lipoteichoic acid or lipopolysaccharide in humans. Am J Respir Crit Care Med. 2008; 178 (1): 34–41. DOI: 10.1164/rccm.200708-1261OC. PMID: 18403723.
51. Hoogerwerf J. J., de Vos A. F., Levi M., Bresser P., van der Zee J. S., Draing C., von Aulock S., van der Poll T. Activation of coagulation and inhibition of fibrinolysis in the human lung on bronchial instillation of lipoteichoic acid and lipopolysaccharide. Crit Care Med. 2009; 37 (2): 619-625. DOI: 10.1097/CCM.0b013e31819584f9. PMID: 19114879.
52. Van der Poll T. Tissue factor as an initiator of coagulation and inflammation in the lung. Crit Care. 2008; 12 Suppl 6 (Suppl 6): S3. DOI: 10.1186/cc7026. PMID: 19105796.
53. Antoniak S., Mackman N. Multiple roles of the coagulation protease cascade during virus infection. Blood. 2014; 123 (17): 2605–13. DOI: 10.1182/blood-2013-09-526277. PMID: 24632711.
54. Antoniak S., Tatsumi K., Hisada Y., Milner J. J., Neidich S. D., Shaver C. M., Pawlinski R., et al. Tissue factor deficiency increases alveolar hemorrhage and death in influenza A virus-infected mice. J Thromb Haemost. 2016; 14 (6): 1238–1248. DOI: 10.1111/jth.13307. PMID: 26947929.
55. Shibamiya A., Hersemeyer K., Schmidt Wöll T., Sedding D., Daniel J.-M., Bauer S., Koyama T., et al. A key role for toll-like receptor-3 in disrupting the hemostasis balance on endothelial cells. Blood. 2009; 113 (3): 714–722. DOI: 10.1182/blood-2008-02-137901. PMID: 18971420.
56. Mackman N., Antoniak S., Wolberg A. S., Kasthuri R., Key N. S. Coagulation abnormalities and thrombosis in patients infected with SARS-CoV-2 and other pandemic viruses. Atheroscler Thromb Vasc Biol. 2020; 40 (9): 2033–44. DOI: 10.1161/ATVBAHA.120.314514. PMID: 32657623.
57. DiNicolantonio J. J., McCarty M. Thrombotic complications of COVID-19 may reflect an upregulation of endothelial tissue factor expression that is contingent on activation of endosomal NADPH oxidase. Open Heart. 2020; 7 (1): e001337. DOI: 10.1136/openhrt-2020-001337. PMID: 32532805.
58. Choi G., Schultz M. J., Van Till J. W. O., Bresser P., van der Zee J. S., Boermeester M. A., Levi M., et al. Disturbed alveolar fibrin turnover during pneumonia is restricted to the site of infection. Eur Respir J. 2004; 24 (5): 786–9. DOI: 10.1183/09031936.04.00140703. PMID: 15516673.
59. Bastarache J. A., Fremont R. D., Kropski J. A., Bossert F. R., Ware L. B. Procoagulant alveolar microparticles in the lungs of patients with acute respiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol. 2009; 297 (6): L1035–41. DOI: 10.1152/ajplung.00214.2009. PMID: 19700643.
60. Choi G., Wolthuis E. K., Bresser P., Levi M., Van Der Poll T., Dzoljic M., Vroom M. B., et al. Mechanical ventilation with lower tidal volumes and positive end-expiratory pressure prevents alveolar coagulation in patients without lung injury. Anesthesiology. 2006; 105 (4): 689–695. DOI: 10.1097/00000542-200610000-00013. PMID: 17006066.
61. Iacoviello L., Di Castelnuovo A., De Curtis A., Agnoli C., Frasca G., Mattiello A., Matullo G., et al. Circulating tissue factor levels and risk of stroke: findings from the EPICOR study. Stroke. 2015; 46 (6): 1501–7. DOI: 10.1161/STROKEAHA.115.008678. PMID: 25931463.
62. Tatsumi K., Mackman N. Tissue factor and atherothrombosis. J Atheroscler Thromb. 2015; 22 (6): 543–9. DOI: 10.5551/jat.30940. PMID: 26016513.
63. Ito T., Kakuuchi M., Maruyama I. Endotheliopathy in septic conditions: mechanistic insight into intravascular coagulation. Crit Care. 2021; 25 (1): 95. DOI: 10.1186/s13054-021-03524-6. PMID: 33685461.
64. Ito T., Maruyama I. Thrombomodulin: protectorate God of the vasculature in thrombosis and inflammation. J Thromb Haemost. 2011; 9: 168–73. DOI: 10.1111/j.1538-7836.2011.04319.x. PMID: 21781252.
65. Urano T., Castellino F. J., Suzuki Y. Regulation of plasminogen activation on cell surfaces and fibrin. J Thromb Haemost. 2018; 16 (8): 1487–97. DOI: 10.1111/jth.14157. PMID: 29779246.
66. Bajaj M. S., Kuppuswamy M. N., Manepalli A. N., Bajaj S. P. Transcriptional expression of tissue factor pathway inhibitor, thrombomodulin and von Willebrand factor in normal human tissues. J Thromb Haemost. 1999; 82 (3): 1047–1052. PMID: 10494762.
67. Bastarache J. A., Wang L., Wang Z., Albertine K. H., Matthay M. A., Ware L. B. Intra-alveolar tissue factor pathway inhibitor is not sufficient to block tissue factor procoagulant activity. Am J Physiol Lung Cell Mol Physiol. 2008; 294 (5): L874–81. DOI: 10.1152/ajplung.00372.2007. PMID: 18310227.
68. van den Boogaard F. E., van ’T Veer C., Roelofs J. J. T. H., Meijers J. C. M., Schultz M. J., Broze Jr G., van der Poll T. Endogenous tissue factor pathway inhibitor has a limited effect on host defense in murine pneumococcal pneumonia. J Thromb Haemost. 2015; 114 (07): 115–122. DOI: 10.1160/TH14-12-1053. PMID: 25832548.
69. Higuchi D. A., Wun T. C., Likert K. M., Broze G. J. Jr. The effect of leukocyte elastase on tissue factor pathway inhibitor. Blood. 1992; 79 (7): 1712–1719. PMID: 1558967.
70. Yun T. H., Cott J. E., Tapping R. I., Slauch J. M., Morrissey J. H. Proteolytic inactivation of tissue factor pathway inhibitor by bacterial omptins. Blood. 2009; 113 (5): 1139–48. DOI: 10.1182/blood-2008-05-157180. PMID: 18988866.
71. Massberg S., Grahl L., von Bruehl M.-L., Manukyan D., Pfeiler S., Goosmann C., Brinkmann V., et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med. 2010; 16 (8): 887–896. DOI: 10.1038/nm.2184. PMID: 20676107.
72. Maroney S. A., Mast A. E. Tissue factor pathway inhibitor and bacterial infection. J Thromb Haemost. 2011; 9 (1): 119–121. DOI: 10.1111/j.1538-7836.2010.04111.x. PMID: 21210950.
73. De Moerloose P., De Benedetti E., Nicod L., Vifian C., Reber G. Procoagulant activity in bronchoalveolar fluids: No relationship with tissue factor pathway inhibitor activity. Thromb Res. 1992; 65 (4–5): 507–18. DOI: 10.1016/0049-3848(92)90202-L. PMID: 1615494.
74. El Solh A. A., Choi G., Schultz M. J., Pineda L. A., Mankowski C. Clinical and hemostatic responses to treatment in ventilator-associated pneumonia: role of bacterial pathogens. Crit Care Med. 2007; 35 (2): 490–6. DOI: 10.1097/01.CCM.0000253308.93761.09. PMID: 17205031.
75. Wunderink R. G., Laterre P.-F., Francois B., Perrotin D., Artigas A., Vidal L. O., Lobo S. M., et al. Recombinant tissue factor pathway inhibitor in severe community-acquired pneumonia: a randomized trial. Am J Respir Crit Care Med. 2011; 183 (11): 1561–8. DOI: 10.1164/rccm.201007-1167OC. PMID: 21297074.
76. Winckers K., Ten Cate H., Hackeng T. M. The role of tissue factor pathway inhibitor in atherosclerosis and arterial thrombosis. Blood Rev. 2013; 27 (3): 119–32. DOI: 10.1016/j.blre.2013.03.001. PMID: 23631910.
77. Won T., Wood M. K., Hughes D. M., Talor M. V., Ma Z., Schneider J., Skinner J. T., et al. Endothelial thrombomodulin downregulation caused by hypoxia contributes to severe infiltration and coagulopathy in COVID-19 patient lungs. EBioMedicine. 2022; 75: 103812. DOI: 10.1016/j.ebiom.2022.103812. PMID: 35033854.
78. Griffin J. H., Fernández J. A., Gale A. J., Mosnier L. O. Activated protein C. J Thromb Haemost. 2007; 5 Suppl 1: 73–80. DOI: 10.1111/j.1538-7836.2007.02491.x. PMID: 17635713.
79. Isshiki T., Sakamoto S., Kinoshita A., Sugino K., Kurosaki A., Homma S. Recombinant human soluble thrombomodulin treatment for acute exacerbation of idiopathic pulmonary fibrosis: a retrospective study. Respiration. 2015; 89 (3): 201–207. DOI: 10.1159/000369828. PMID: 25659984.
80. Yin Q., Liu B., Chen Y., Zhao Y., Li C. Soluble thrombomodulin to evaluate the severity and outcome of community-acquired pneumonia. Inflammation. 2014; 37 (4): 1271–1279. DOI: 10.1007/s10753-014-9854-9. PMID: 24573987.
81. Guo S.-C., Xu C.-W., Liu Y.-Q., Wang J.-F., Zheng Z.-W. Changes in plasma levels of thrombomodulin and D-dimer in children with different types of Mycoplasma pneumoniae pneumonia. Zhongguo Dang Dai Er Ke Za Zhi. 2013; 15 (8): 619–622. (in Chinese). PMID: 23965872.
82. Yamazaki A., Nukui Y., Kameda T., Saito R., Koda Y., Ichimura N., Tohda S., et al. Variation in presepsin and thrombomodulin levels for predicting COVID-19 mortality. Sci Rep. 2023; 13 (1): 21493. DOI: 10.1038/s41598-023-48633-0. PMID: 38057335.
83. Padilla S., Andreo M., Marco P., Marco-Rico A., Ledesma C., Fernández-González M., García-Abellán J., et al. Enhanced prediction of thrombotic events in hospitalized COVID-19 patients with soluble thrombomodulin. PLoS ONE. 2025; 20 (3): e0319666. DOI: 10.1371/journal.pone.0319666. PMID: 40106444.
84. Rijneveld A. W., Weijer S., Florquin S., Esmon C. T., Meijers J. C.M., Speelman P., Reitsma P. H., et al. Thrombomodulin mutant mice with a strongly reduced capacity to generate activated protein C have an unaltered pulmonary immune response to respiratory pathogens and lipopolysaccharide. Blood. 2004; 103 (5): 1702–9. DOI: 10.1182/blood-2002-05-1380. PMID: 14592828.
85. Choi G., Schultz M. J., Levi M., van der Poll T., Millo J. L., Garrard C. S. Protein C in pneumonia. Thorax. 2005; 60 (8): 705–706. DOI: 10.1136/thx.2004.037341. PMID: 16061717.
86. Esmon C. Inflammation and the activated protein C anticoagulant pathway. Semin Thromb Hemost. 2006; 32 (S 1): 049–60. DOI: 10.1055/s-2006-939554. PMID: 16673266.
87. Eckle I., Seitz R., Egbring R., Kolb G., Havemann K. Protein C degradation in vitro by neutrophil elastase. Biol Chem Hoppe Seyler. 1991; 372 (2): 1007–14. DOI: 10.1515/bchm3.1991.372.2.1007. PMID: 1793515.
88. Yamamoto K., Loskutoff D. J. Extrahepatic expression and regulation of protein C in the mouse. Am J Pathol. 1998; 153 (2): 547–555. DOI: 10.1016/S0002-9440(10)65597-6. PMID: 9708814.
89. Warkentin T. E., Pai M. Shock, acute disseminated intravascular coagulation, and microvascular thrombosis: is ‹shock liver› the unrecognized provocateur of ischemic limb necrosis? J Thromb Haemost. 2016; 14 (2): 231–235. DOI: 10.1111/jth.13219. PMID: 26662371.
90. Ware L. B., Fang X., Matthay M. A. Protein C and thrombomodulin in human acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2003; 285 (3): L514-L521. DOI: 10.1152/ajplung.00442.2002. PMID: 12754194.
91. Frantzeskaki F., Armaganidis A., Orfanos S. E. Immunothrombosis in acute respiratory distress syndrome: cross talks between inflammation and coagulation. Respiration. 2017; 93 (3): 212–25. DOI: 10.1159/000453002. PMID: 27997925.
92. Wуjcik K., Bazan-Socha S., Celejewska-Wójcik N., Górka K., Lichołai S., Polok K., Stachura T., et al. Decreased protein C activity, lower ADAMTS13 antigen and free protein S levels accompanied by unchanged thrombin generation potential in hospitalized COVID-19 patients. Thromb Res. 2023; 223: 80–6. DOI: 10.1016/j.thromres.2023.01.016. PMID: 36709678.
93. De Boer J. D., Kager L. M., Roelofs J. J., Meijers J. C., De Boer O. J., Weiler H., Isermann B., et al. Overexpression of activated protein C hampers bacterial dissemination during pneumococcal pneumonia. BMC Infect Dis. 2014; 14 (1): 559. DOI: 10.1186/s12879-014-0559-3. PMID: 25366058.
94. Macko R. F., Ameriso S. F., Gruber A., Griffin J. H., Fernandez J. A., Barndt R., Quismorio F. P., et al. Impairments of the protein C system and fibrinolysis in infection-associated stroke. Stroke. 1996; 27 (11): 2005–11. DOI: 10.1161/01.STR.27.11.2005. PMID: 8898806.
95. Russell J. A. Genetics of coagulation factors in acute lung injury. Crit Care Med. 2003; 31 (Suppl): S243–7. DOI: 10.1097/01.CCM.0000057870.61079.3E. PMID: 12682447.
96. Ryu K. H., Hindman B. J., Reasoner D. K., Dexter F. Heparin reduces neurological impairment after cerebral arterial air embolism in the rabbit. Stroke. 1996; 27 (2): 303–310. DOI: 10.1161/01.str.27.2.303. PMID: 8571428.
97. Sims P. J., Wiedmer T. Induction of cellular procoagulant activity by the membrane attack complex of complement. Semin Cell Biol. 1995; 6 (5): 275–282. DOI: 10.1006/scel.1995.0037. PMID: 8562920.
98. Keragala C. B., Draxler D. F., McQuilten Z.K., Medcalf R. L. Haemostasis and innate immunity — a complementary relationship: a review of the intricate relationship between coagulation and complement pathways. Br J Haematol. 2018; 180 (6): 782–98. DOI: 10.1111/bjh.15062. PMID: 29265338.
99. Lüscher E. F. Induction of platelet aggregation by immune complexes. Ser Haematol. 1970; 3 (4): 121–129. PMID: 4107202.
100. Penny R., Castaldi P. A., Whitsed H. M. Inflammation and haemostasis in paraproteinaemias. Br J Haematol. 1971; 20 (1): 35–44. DOI: 10.1111/j.1365-2141.1971.tb00784.x. PMID: 4924493.
101. Lisiewicz J. Rola leukocytów w biomorfozie zakrzepów i krzepnieciu krwi [The role of leukocytes in the biomorphosis of thrombosis and blood coagulation]. Acta Physiol Pol. 1971; 22 (6): 785–789. (in Polish). PMID: 5292643.
102. Levine P. H., Weinger R. S., Simon J., Scoon K. L., Krinsky N. I. Leukocyte-platelet interaction. Release of hydrogen peroxide by granulocytes as a modulator of platelet reactions. J Clin Invest. 1976; 57 (4): 955–63. DOI: 10.1172/JCI108372. PMID: 947961.
103. Vazquez-Garza E., Jerjes-Sanchez C., Navarrete A., Joya-Harrison J., Rodriguez D. Venous thromboembolism: thrombosis, inflammation, and immunothrombosis for clinicians. J Thromb Thrombolysis. 2017; 44 (3): 377–85. DOI: 10.1007/s11239-017-1528-7. PMID: 28730407.
104. Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol. 2018; 18 (2): 134–47. DOI: 10.1038/nri.2017.105. PMID: 28990587.
105. Porembskaya O., Zinserling V., Tomson V., Toropova Y., Starikova E., Maslei V., Bulavinova N., et al. Neutrophils mediate pulmonary artery thrombosis in situ. Int J Mol Sci. 2022; 23 (10): 5829. DOI: 10.3390/ijms23105829. PMID: 35628637.
106. Brinkmann V., Reichard U., Goosmann C., Fauler B., Uhlemann Y., Weiss D. S., Weinrauch Y., et al. Neutrophil extracellular traps kill bacteria. Science. 2004; 303 (5663): 1532–5. DOI: 10.1126/science.1092385. PMID: 15001782.
107. Semeraro F., Ammollo C. T., Morrissey J. H., Dale G. L., Friese P., Esmon N. L., Esmon C. T. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood. 2011; 118 (7): 1952–61. DOI: 10.1182/blood-2011-03-343061. PMID: 21673343.
108. Fuchs T. A., Bhandari A. A., Wagner D. D. Histones induce rapid and profound thrombocytopenia in mice. Blood. 2011; 118 (13): 3708–14. DOI: 10.1182/blood-2011-01-332676. PMID: 21700775.
109. Lцf A., Müller J. P., Brehm M. A. A biophysical view on von Willebrand factor activation. J Cell Physiol. 2018; 233 (2): 799–810. DOI: 10.1002/jcp.25887. PMID: 28256724.
110. Zhang C., Kelkar A., Neelamegham S. Von Willebrand factor self-association is regulated by the shear-dependent unfolding of the A2 domain. Blood Adv. 2019; 3 (7): 957–68. DOI: 10.1182/bloodadvances.2018030122. PMID: 30936056.
111. South K., Lane D. A. ADAMTS‐13 and von Willebrand factor: a dynamic duo. J Thromb Haemost. 2018; 16 (1): 6–18. DOI: 10.1111/jth.13898. PMID: 29108103.
112. Grдssle S., Huck V., Pappelbaum K. I., Gorzelanny C., Aponte-Santamaría C., Baldauf C., Gräter F., et al. von Willebrand factor directly interacts with DNA from neutrophil extracellular traps. Atheroscler Thromb Vasc Biol. 2014; 34 (7): 1382–9. DOI: 10.1161/ATVBAHA.113.303016. PMID: 24790143.
113. Yang J., Wu Z., Long Q., Huang J., Hong T., Liu W., Lin J. Insights into immunothrombosis: the interplay among neutrophil extracellular trap, von Willebrand factor, and ADAMTS13. Front Immunol. 2020; 11: 610696. DOI: 10.3389/fimmu.2020.610696. PMID: 33343584.
114. Fuchs T. A., Brill A., Wagner D. D. Neutrophil extracellular trap (NET) impact on deep vein thrombosis. Atheroscler Thromb Vasc Biol. 2012; 32 (8): 1777–83. DOI: 10.1161/ATVBAHA.111.242859. PMID: 22652600.
115. Noubouossie D. F., Whelihan M. F., Yu Y.-B., Sparkenbaugh E., Pawlinski R., Monroe D. M., Key N. S. In vitro activation of coagulation by human neutrophil DNA and histone proteins but not neutrophil extracellular traps. Blood. 2017; 129 (8): 1021–9. DOI: 10.1182/blood-2016-06-722298. PMID: 27919911.
116. Doevelaar A. A.N., Bachmann M., Hölzer B., Seibert F. S., Rohn B. J., Bauer F., Witzke O., et al. Von Willebrand factor multimer formation contributes to immunothrombosis in coronavirus disease 2019. Crit Care Med. 2021; 49 (5): e512-e520. DOI: 10.1097/CCM.0000000000004918. PMID: 33591004.
117. Pham T. T., Punsawad C., Glaharn S., De Meyer S. F., Viriyavejakul P., van den Steen P. E. Release of endothelial activation markers in lungs of patients with malaria-associated acute respiratory distress syndrome. Malar J. 2019; 18 (1): 395. DOI: 10.1186/s12936-019-3040-3. PMID: 31796023.
118. Favaloro E. J., Henry B. M., Lippi G. Increased V. W.F and decreased ADAMTS-13 in COVID-19: creating a milieu for (micro)thrombosis. Semin Thromb Hemost. 2021; 47 (4): 400–418. DOI: 10.1055/s-0041-1727282. PMID: 33893632.
119. Babkina A. S., Ostrova I. V., Yadgarov M. Y., Kuzovlev A. N., Grechko A. V., Volkov A. V., Golubev A. M. The role of Von Willebrand factor in the pathogenesis of pulmonary vascular thrombosis in COVID-19. Viruses. 2022; 14 (2): 211. DOI: 10.3390/v14020211. PMID: 35215805.
120. Lüttge M., Fulde M., Talay S. R., Nerlich A., Rohde M., Preissner K. T., Hammerschmidt S., et al. Streptococcus pneumoniae induces exocytosis of Weibel-Palade bodies in pulmonary endothelial cells. Cell Microbiol. 2012; 14 (2): 210–225. DOI: 10.1111/j.1462-5822.2011.01712.x. PMID: 21999205.
121. Martens C. P., Peetermans M., Vanassche T., Verhamme P., Jacquemin M., Martinod K. Peptidylarginine deiminase 4 and ADAMTS13 activity in Staphylococcus aureus bacteraemia. Philos Trans R Soc Lond B Biol Sci. 2023; 378 (1890): 20230042. DOI: 10.1098/rstb.2023.0042. PMID: 37778390.
122. Голубев А. М., Мороз В. В., Лысенко Д. В., Кузовлев А. Н., Остапченко Д. А. ИВЛ-индуцированное острое повреждение легких (экспериментальное, морфологическое исследование). Общая реаниматология. 2006; 2 (4): 8–12. DOI: 10.15360/1813-9779-2006-4-8-12
123. Ибадов Р. А., Сабиров Д. М., Эшонходжаев О. Д., Ибрагимов С. Х., Азизова Г. М., Угарова Т. Б. Факторы риска развития и тяжелого течения вентилятор-ассоциированного трахеобронхита у пациентов на пролонгированной искусственной вентиляции легких. Общая реаниматология. 2023; 19 (5): 46–52. DOI: 10.15360/1813-9779-2023-5-2320.
124. Yiming M. T., Lederer D. J., Sun L., Huertas A., Issekutz A. C., Bhattacharya S. Platelets enhance endothelial adhesiveness in high tidal volume ventilation. Am J Respir Cell Mol Biol. 2008; 39 (5): 569–575. DOI: 10.1165/rcmb.2007-0332OC. PMID: 18483418.
125. Klopf J., Brostjan C., Eilenberg W., Neumayer C. Neutrophil extracellular traps and their implications in cardiovascular and inflammatory disease. Int J Mol Sci. 2021; 22 (2): 559. DOI: 10.3390/ijms22020559. PMID: 33429925.
126. Gao X., Zhao X., Li J., Liu C., Li W., Zhao J., Li Z., et al. Neutrophil extracellular traps mediated by platelet microvesicles promote thrombosis and brain injury in acute ischemic stroke. Cell Commun Signal. 2024; 22 (1): 50. DOI: 10.1186/s12964-023-01379-8. PMID: 38233928.
127. Laridan E., Denorme F., Desender L., Francois O., Andersson T., Deckmyn H., Vanhoorelbeke K., et al. Neutrophil extracellular traps in ischemic stroke thrombi. Ann Neurol. 2017; 82 (2): 223–232. DOI: 10.1002/ana.24993. PMID: 28696508.
128. Peсa-Martínez C., Durán-Laforet V., García-Culebras A., Ostos F., Hernández-Jiménez M., Bravo-Ferrer I., Pérez-Ruiz A., et al. Pharmacological modulation of neutrophil extracellular traps reverses thrombotic stroke tPA (tissue-type plasminogen activator) resistance. Stroke. 2019; 50 (11): 3228–37. DOI: 10.1161/STROKEAHA.119.026848. PMID: 31526124.
129. Longstaff C., Varjú I., Sótonyi P., Szabó L., Krumrey M., Hoell A., Bóta A., et al. Mechanical stability and fibrinolytic resistance of clots containing fibrin, DNA, and histones. J Biol Chem. 2013; 288 (10): 6946–56. DOI: 10.1074/jbc.M112.404301. PMID: 23293023.
130. Patel R. B., Jha A. B., Jain A., Verma A. K., Saini S., Muia J., Gurung P., et al. Imbalanced VWF-ADAMTS13 axis contributes to the detrimental impact of a preceding respiratory tract infection on stroke. Blood Adv. 2025; 9 (6): 1330–41. DOI: 10.1182/bloodadvances.2024014622. PMID: 39787593.
131. Luka N., South K., Jones R., Unsworth A. J., Coutts G., Mosneag I., Younas M., et al. The role of the VWF/ADAMTS13 Axis in the thromboinflammatory response in ischemic stroke after SARS‐CoV2 infection. Brain Behav. 2025; 15 (2): e70348. DOI: 10.1002/brb3.70348. PMID: 39972966.
132. Li J., Geng Y., Luo Y., Sun X., Guo Y., Dong Z. Pathological roles of NETs-platelet synergy in thrombotic diseases: from molecular mechanisms to therapeutic targeting. Int Immunopharmacol. 2025; 159: 114934. DOI: 10.1016/j.intimp.2025.114934. PMID: 40418882.
133. Sharma S., Tyagi T., Antoniak S. Platelet in thrombo-inflammation: unraveling new therapeutic targets. Front Immunol. 2022; 13: 1039843. DOI: 10.3389/fimmu.2022.1039843. PMID: 36451834.
134. Violi F., Cangemi R., Calvieri C. Pneumonia, thrombosis and vascular disease. J Thromb Haemost. 2014; 12 (9): 1391–400. DOI: 10.1111/jth.12646. PMID: 24954194.
135. Mirsaeidi M., Peyrani P., Aliberti S., Filardo G., Bordon J., Blasi F., Ramirez J. A. Thrombocytopenia and thrombocytosis at time of hospitalization predict mortality in patients with community-acquired pneumonia. Chest. 2010; 137 (2): 416–20. DOI: 10.1378/chest.09-0998. PMID: 19837825.
136. Kreutz R. P., Bliden K. P., Tantry U. S., Gurbel P. A. Viral respiratory tract infections increase platelet reactivity and activation: an explanation for the higher rates of myocardial infarction and stroke during viral illness. J Thromb Haemost. 2005; 3 (9): 2108–9. DOI: 10.1111/j.1538-7836.2005.01474.x. PMID: 16102122.
137. Consolo F., Della Valle P., Saracino M., Bonora M., Donadoni G., Ciceri F., Tresoldi M., et al. Platelet activation state in early stages of COVID-19. Minerva Anestesiol. 2022; 88 (6): 472–478. DOI: 10.23736/S0375-9393.22.16054-2. PMID: 35315619.
138. McMullen P.D., Cho J. H., Miller J. L., Husain A. N., Pytel P., Krausz T. A descriptive and quantitative immunohistochemical study demonstrating a spectrum of platelet recruitment patterns across pulmonary infections including COVID-19. Am J Clin Path. 2021; 155 (3): 354–63. DOI: 10.1093/ajcp/aqaa230. PMID: 33174599.
139. Leinonen M., Saikku P. Infections and atherosclerosis. Scand Cardiovasc J. 2000; 34 (1): 12–20. DOI: 10.1080/14017430050142341. PMID: 10816055.
140. Бабкина А. С., Голубев А. М., Острова И. В., Волков А. В., Кузовлев А. Н. Морфологические изменения головного мозга при COVID-19. Общая реаниматология. 2021; 17 (3): 4–15. DOI: 10.15360/1813-9779-2021-3-1-0.
141. Ezzahiri R., Nelissenvrancken H., Kurvers H., Stassen F., Vliegen I., Grauls G., Vanpul M., et al. Chlamydophila pneumoniae (Chlamydia pneumoniae) accelerates the formation of complex atherosclerotic lesions in Apo E3-Leiden mice. Cardiovasc Res. 2002; 56 (2): 269–76. DOI: 10.1016/S0008-6363(02)00544-8. PMID: 12393097.
142. Vanderwal A. Chlamydia pneumoniae inside the atherosclerotic plaque — does it affect plaque inflammation and plaque progression? Cardiovasc Res. 2002; 56 (2): 178–80. DOI: 10.1016/S0008-6363(02)00652-1. PMID: 12393086.
143. Pigarevskii P. V., Mal’tseva S.V., Snegova V. A., Davydova N. G., Guseva V. A. Chlamydia pneumoniae and immunoinflammatory reactions in an unstable atherosclerotic plaque in humans. Bull Exp Biol Med. 2015; 159 (2): 278–81. DOI: 10.1007/s10517-015-2941-6. PMID: 26085364.
144. Bartlett B., Ludewick H. P., Verma S., Corrales-Medina V. F., Waterer G., Lee S., Dwivedi G. Cardiovascular changes after pneumonia in a dual disease mouse model. Sci Rep. 2022; 12 (1): 11124. DOI: 10.1038/s41598-022-15507-w. PMID: 35778475.
145. Boumegouas M., Raju M., Gardiner J., Hammer N., Saleh Y., Al-Abcha A., Kalra A., et al. Interaction between bacteria and cholesterol crystals: implications for endocarditis and atherosclerosis. PLoS ONE. 2022; 17 (2): e0263847. DOI: 10.1371/journal.pone.0263847. PMID: 35180238.
146. Li Y., Zhang M., Li Y., Shen Y., Wang X., Li X., Wang Y., et al. Flagellar hook protein FlgE promotes macrophage activation and atherosclerosis by targeting ATP5B. Atherosclerosis. 2024; 390: 117429. DOI: 10.1016/j.atherosclerosis.2023.117429. PMID: 38278062.
147. Lanter B. B., Sauer K., Davies D. G. Bacteria present in carotid arterial plaques are found as biofilm deposits which may contribute to enhanced risk of plaque rupture. mBio. 2014; 5 (3): e01206-14. DOI: 10.1128/mBio.01206-14. PMID: 24917599.
148. Canducci F., Saita D., Foglieni C., Piscopiello M. R., Chiesa R., Colombo A., Cianflone D., et al. Cross-reacting antibacterial autoantibodies are produced within coronary atherosclerotic plaques of acute coronary syndrome patients. PLoS ONE. 2012; 7 (8): e42283. DOI: 10.1371/journal.pone.0042283. PMID: 22879930.
149. Demina E. P., Smutova V., Pan X., Fougerat A., Guo T., Zou C., Chakraberty R., et al. Neuraminidases 1 and 3 trigger atherosclerosis by desialylating low-density lipoproteins and increasing their uptake by macrophages. J Am Heart Assoc. 2021; 10: e018756. DOI: 10.1161/JAHA.120.018756. PMID: 33554615.
150. Mezentsev A., Bezsonov E., Kashirskikh D., Baig M. S., Eid A. H., Orekhov A. Proatherogenic sialidases and desialylated lipoproteins: 35 years of research and current state from bench to bedside. Biomedicines. 2021; 9 (6): 600. DOI: 10.3390/biomedicines9060600. PMID: 34070542.
151. Jung S.-H., Lee K.-T. Atherosclerosis by virus infection — a short review. Biomedicines. 2022; 10 (10): 2634. DOI: 10.3390/biomedicines10102634. PMID: 36289895.
152. Lee H. S., Noh J. Y., Shin O. S., Song J. Y., Cheong H. J., Kim W. J. Matrix metalloproteinase-13 in atherosclerotic plaque is increased by influenza A virus infection. J Infect Dis. 2020; 221 (2): 256–66. DOI: 10.1093/infdis/jiz580. PMID: 31693113.
153. Qi X.-Y., Qu S.-L., Xiong W.-H., Rom O., Chang L., Jiang Z.-S. Perivascular adipose tissue (PVAT) in atherosclerosis: a double-edged sword. Cardiovasc Diabetol. 2018; 17 (1): 134. DOI: 10.1186/s12933-018-0777-x. PMID: 30305178.
154. Chang L., Milton H., Eitzman D. T., Chen Y. E. Paradoxical roles of perivascular adipose tissue in atherosclerosis and hypertension. Circ J. 2013; 77 (1): 11–8. DOI: 10.1253/circj.CJ-12-1393. PMID: 23207957.
155. Oseghale O., Liong S., Coward-Smith M., To E. E., Erlich J. R., Luong R., Liong F., et al. Influenza A virus elicits peri-vascular adipose tissue inflammation and vascular dysfunction of the aorta in pregnant mice. PLoS Pathog. 2022; 18 (8): e1010703. DOI: 10.1371/journal.ppat.1010703. PMID: 35930608.
156. Zheng P., Zhang N., Chen Z. Pulmonary abscess combined with pulmonary vein thrombosis and stroke: a case report. J Stroke Cerebrovasc Dis. 2024; 33 (1): 107461. DOI: 10.1016/j.jstrokecerebrovasdis.2023.107461. PMID: 38000110.
157. Albrecht P., Stettner M., Husseini L., Macht S., Jander S., Mackenzie C., Oesterlee U., et al. An emboligenic pulmonary abscess leading to ischemic stroke and secondary brain abscess. BMC Neurol. 2012; 12 (1): 133. DOI: 10.1186/1471-2377-12-133. PMID: 23121862.
158. Pasha A. K., Rabinstein A., McBane R. D. Pulmonary venous thrombosis in a patient with COVID-19 infection. J Thromb Thrombolysis. 2021; 51 (4): 985–8. DOI: 10.1007/s11239-021-02388-5. PMID: 33515360.
159. Meaney J. F. M., O’Donnell J. S., Bridgewood C., Harbison J., McGonagle D. Perspective: the case for acute large vessel ischemic stroke in COVID-19 originating within thrombosed pulmonary venules. Stroke. 2022; 53 (7): 2411–9. DOI: 10.1161/STROKEAHA.121.038056. PMID: 35543127.
160. Ker P. J. Cryptogenic, embolic stroke — looking backstage. J Stroke Cerebrovasc Dis. 2022; 31 (5): 106353. DOI: 10.1016/j.jstrokecerebrovasdis.2022.106353. PMID: 35247732.
Рецензия
Для цитирования:
Бабкина А.С. Роль инфекционных заболеваний нижних дыхательных путей в патогенезе ишемического инсульта (обзор). Общая реаниматология. https://doi.org/10.15360/1813-9779-2025-5-2598
For citation:
Babkina A.S. The Role of Infectious Diseases of the Lower Respiratory Tract in the Pathogenesis of Ischemic Stroke. General Reanimatology. (In Russ.) https://doi.org/10.15360/1813-9779-2025-5-2598