The Potential for Improving the Diagnostics of Nosocomial Meningitis and Ventriculitis
https://doi.org/10.15360/1813-9779-2025-5-26-34
Abstract
The aim of the study was to identify the most specific and sensitive criteria for diagnosing nosocomial meningitis and ventriculitis.
Materials and methods. A retrospective case-control cohort study conducted at the department of anesthesiology and intensive care of the A. L. Polenov Russian Research Neurosurgical Institute (RRNI), a branch of the V. A. Almazov National Medical Research Center (NMRC) of the Ministry of Health of Russia included 120 patients who underwent intracranial neurosurgery: the main group (N=60) — patients with nosocomial meningitis (NM), and the comparison group (N=60) — patients without NM. Inclusion criteria: age over 18 years. Exclusion criteria: severe immunosuppressive condition (HIV infection), signs of central nervous system (CNS) infection (meningitis, ventriculitis, brain abscess) on admission, extracranial surgical interventions, pre-operative cerebrospinal fluid leakage, CNS trauma, and extracranial causes of CNS infection. The US Centers for Disease Control and Prevention (CDC) and the Burdenko National Medical Research Center for Neurosurgery criteria for NM diagnosis were used in the study.
Results. External validation of the NM diagnostic criteria in the analyzed patient cohort resulted in 81.67% sensitivity and 83.33% specificity of the CDC criteria. Sensitivity and specificity of the Burdenko National Medical Research Center for Neurosurgery criteria were 81.67% and 88.33%, respectively, for probable NM, and 51.67% and 100%, for confirmed NM. The CDC criteria demonstrated the highest sensitivity for protein concentration in cerebrospinal fluid (CSF) > 0.33 g/L (83.6%), with simultaneous extremely low specificity of 21%, and the highest specificity for the CSF positive culture (100%). As for the Burdenko National Research Medical Center for Neurosurgery criteria, in probable NM the highest sensitivity was established for CSF cell count > 65 cells/µL (64.4%), and the highest specificity — for CSF glucose < 2.6 mmol/l (93.9%) and CSF/serum glucose ratio (CSF/SGLU) < 0.45 (96.8%). In confirmed NM, CSF cell count > 65 cells/µL was also the most sensitive parameter (95.2%), although with 51% specificity. The highest specificity was found for the CSF lactate >
4.2 mmol/L (92.3%). The optimal threshold values were calculated for four parameters: body temperature
> 37.7°C, CSF cell count > 245 cells/µL, CSF glucose < 2.0 mmol/L, and CSF lactate > 3.7 mmol/L. Using a combination of threshold values for all four parameters, we achieved a sensitivity of 90.00% and a specificity of 91.67%. CSF cell count (AUC=0.90; 95% CI 0.84–0.95), increased CSF lactate (AUC=0.85; 95% CI 0.75–0.93), total CSF protein (AUC=0.83; 95% CI 0.75–0.90) and body temperature (AUC=0.82; 95% CI 0.74–0.89) had the greatest diagnostic value. Positive CSF culture and the occipital muscle rigidity correlated with the diagnosis of NM (rbp=0.522 and rbp=0.415, respectively, P=0.0001), but did not show good predictive diagnostic capacity.
Conclusion. Fever, increase in CSF cell count and CSF lactate were identified as the most clinically significant signs of NM. A positive CF culture traditionally used as the gold standard for diagnosis of NM showed low sensitivity of 69.2%. When taken together, the identified in the study threshold values of body temperature, CSF cell count, CSF glucose and lactate have a higher sensitivity and specificity than those used earlier.
About the Authors
M. I. AybazovaRussian Federation
Medina I. Aybazova
12 Mayakovsky Str., 191014 St. Petersburg
L. A. Shmidt
Russian Federation
Leonid A. Shmidt
2 Akkuratova Str., 197341 Saint Petersburg
N. V. Dryagina
Russian Federation
Natalya V. Dryagina
12 Mayakovsky Str., 191014 St. Petersburg
E. S. Borisova
Russian Federation
Elena S. Borisova
2 Akkuratova Str., 197341 Saint Petersburg
K. A. Krivchikova
Russian Federation
Kristina A. Krivchikova
2 Akkuratova Str., 197341 Saint Petersburg
N. V. Goncharuk
Russian Federation
Nikita V. Goncharuk
2 Akkuratova Str., 197341 Saint Petersburg
L. M. Tsentsiper
Russian Federation
Lubov M. Tsentsiper
12 Mayakovsky Str., 191014 St. Petersburg,
2 Akkuratova Str., 197341 Saint Petersburg,
2 Litovskaya Str, 194100 Saint-Petersburg,
6 Miklukho-Maсlaya Str., 117198 Moscow
A. N. Kondratyev
Russian Federation
Anatoly N. Kondratyev
12 Mayakovsky Str., 191014 St. Petersburg
References
1. Corona-Nakamura A. L., Arias-Merino M. J., Ávila-Esparza E. I., Tolentino-Corona M. L., Cañedo-Castañeda C. C., Flores-Salinas H. E., Corona-Macías J. F., et al. Ventriculitis due to multidrug-resistant gram-negative bacilli associated with external ventricular drain: evolution, treatment, and outcomes. Front Neurol. 2024; 15: 1384206. DOI: 10.3389/fneur.2024.1384206. PMID: 38737346
2. Kurdyumova N. V., Ershova O. N., Savin I. A., Shifrin M. A., Danilov G. V., Aleksandrova I. A., Gadzhieva O. A., et al. Drainage-associated meningitis in neurocritical care patients. The results of a five-year prospective study. Burdenko’s Journal of Neurosurgery = Zhurnal Voprosy Neirokhirurgii imeni N.N. Burdenko. 2017; 81 (6): 56–63. (in Russ.). DOI: 10.17116/neiro201781656-62.
3. Sіychan K., Piersiak M., Rubin J., Kozioł A., Tyliszczak M., Pawłowski M., Chojak R. Regional and systemic complications following glioma resection: a systematic review and meta-analysis. Neurosurg Rev. 2025; 48 (1): 323. DOI: 10.1007/s10143-025-03478-1. PMID: 40138052.
4. Kurdyumova N. V., Usachev D.Yu., Savin I. A., Ershova O. N., Gadzhieva O. A., Shifrin M. A., Danilov G. V., et al. Nosocomial meningitis laboratory criteria in ICU patients: 5-year surveillance. Messenger of Anesthesiology and Resuscitation = Vestnik Anesthesiologii i Reanimatologii. 2021; 18 (5): 47–56. (in Russ.). DOI: 10.21292/2078-5658-2021-18-5-47-56.
5. Chojak R., Koźba-Gosztyła M., Gaik M., Madej M., Majerska A., Soczyński O., Czapiga B. Meningitis after elective intracranial surgery: a systematic review and meta-analysis of prevalence. Eur J Med Res. 2023; 28 (1): 184. DOI: 10.1186/s40001-023-01141-3. PMID: 37291583.
6. Zeggay A., Patry I., Chirouze C., Bouiller K. Characteristics and outcomes of cerebrospinal fluid shunt and drain-associated infections. Infect Dis Now. 2023; 53 (3): 104665. DOI: 10.1016/j.idnow.2023.104665. PMID: 36736666.
7. Ramanan M., Shorr A., Lipman J. Ventriculitis: infection or inflammation. Antibiotics (Basel). 2021; 10 (10): 1246. DOI: 10.3390/antibiotics10101246. PMID: 34680826.
8. Repplinger S., Jacquier H., Verret A., Berçot B., Munier A. L., Le Dorze M., Sonneville R., et al. The Ventriculostomy-related infection score: an antibiotic stewardship tool in ventriculostomy-related infections. Neurosurgery. 2024; 97 (1): 223–233. DOI: 10.1227/neu.0000000000003300. PMID: 39636125.
9. Bloch K., Hasbun R. Central nervous system infections associated with neurologic devices. Curr Opin Infect Dis. 2021; 34 (3): 238–244. DOI: 10.1097/QCO.0000000000000723. PMID: 33741795.
10. Zheng G., Shi Y., Sun J., Wang S., Qian L., Lv H., Zhang G., et al. Clinical characteristics and predictors of mortality of patients with post-neurosurgical meningitis- a 900-cases cohort study. Infect Drug Resist. 2024; 17: 4853–4863. DOI: 10.2147/IDR.S491379. PMID: 39524980.
11. Identifying Healthcare-associated Infections (HAI) for NHSN Surveillance. https://www.cdc.gov/nhsn/PDFs/pscManual/2PSC_ IdentifyingHAIs_NHSNcurrent.pdf.
12. Tunkel A. R., Hasbun R., Bhimraj A., Byers K., Kaplan S. L., Scheld W. M., van de Beek D., et al. 2017 Infectious Diseases Society of America’s clinical practice guidelines for healthcare-associated ventriculitis and meningitis. Clin Infect Dis. 2017; 64 (6): e34–e65. DOI: 10.1093/cid/ciw861. PMID: 28203777.
13. Bir R., Lackner P., Pfausler B., Schmutzhard E. Nosocomial ventriculitis and meningitis in neurocritical care patients J Neurol. 2008; 255 (11): 1617–1624. DOI: 10.1007/s00415-008-0059-8. PMID: 19156484.
14. Mounier R., Lobo D., Cook F., Fratani A., Attias A., Martin M., Chedevergne K., et al. Clinical, biological, and microbiological pattern associated with ventriculostomy-related infection: a retrospective longitudinal study. Acta Neurochir (Wien). 2015; 157 (12): 2209–2217. DOI: 10.1007/s00701-015-2574-6. PMID: 26363898.
15. Hasbun R. Central nervous system device infections. Curr Infect Dis Rep. 2016; 18 (11): 34. DOI: 10.1007/s11908-016-0541-x. PMID: 27686676.
16. Karvouniaris M., Brotis A., Tsiakos K., Palli E., Koulenti D. Current perspectives on the diagnosis and management of healthcare-associated ventriculitis and meningitis. Infect Drug Resist. 2022; 15: 697–721. DOI: 10.2147/IDR.S326456. PMID: 35250284.
17. Bеdholm M., Blixt J., Glimåker M., Ternhag A., Hedlund J., Nelson D. W. Cerebrospinal fluid cell count variability is a major confounding factor in external ventricular drain-associated infection surveillance diagnostics: a prospective observational study. Crit Care. 2021; 25 (1): 291. DOI: 10.1186/s13054-021-03715-1 PMID: 34380543.
18. Panic H., Gjurasin B., Santini M., Kutlesa M., Papic N. Etiology and outcomes of healthcare-associated meningitis and ventriculitisa single center cohort study. Infect Dis Rep. 2022; 14 (3): 420–427. DOI: 10.3390/idr14030045. PMID: 35735755.
19. Rogers T., Sok K., Erickson T., Aguilera E., Wootton S. H., Murray K. O., Hasbun R. Impact of antibiotic therapy in the microbiological yield of healthcare-associated ventriculitis and meningitis. Open Forum Infect Dis. 2019; 6 (3): ofz050. DOI: 10.1093/ofid/ofz050 PMID: 30899767.
20. Djukic M., Lange P., Erbguth F., Nau R. Spatial and temporal variation of routine parameters: pitfalls in the cerebrospinal fluid analysis in central nervous system infections. J Neuroinflammation. 2022; 19 (1): 174. DOI: 10.1186/s12974-022-02538-3. PMID: 35794632.
21. Huy N. T., Thao N. T., Diep D. T., Kikuchi M., Zamora J., Hirayama K. Cerebrospinal fluid lactate concentration to distinguish bacterial from aseptic meningitis: a systemic review and meta-analysis. Crit Care. 2010; 14 (6): R240. DOI: 10.1186/cc9395. PMID: 21194480.
22. Xiao X., Zhang Y., Zhang L., Kang P., Ji N. The diagnostic value of cerebrospinal fluid lactate for post-neurosurgical bacterial meningitis: a meta-analysis. BMC Infect Dis. 2016; 16 (1): 483. DOI: 10.1186/s12879-016-1818-2. PMID: 27618955.
23. Wang Q., Wang Y., Yang Y., Kong Y., Peng Y. The value of elevated cerebrospinal fluid lactate concentrations in post-neurosurgical bacterial meningitis. BMC Neurol. 2023; 23 (1): 377. DOI: 10.1186/s12883-023-03428-8. PMID: 37864165.
24. Dorresteijn K. R. I. S., Verheul R. J., Ponjee G. A. E., Tewarie R. N., Müller,M. C. A., van de Beek D., Brouwer M. C., et al. Diagnostic accuracy of clinical signs and biochemical parameters for external ventricular CSF catheter-associated infection. Neurol Clin Pract. 2022; 12 (4): 298–306. DOI: 10.1212/CPJ.0000000000200059. PMID: 36382125.
25. Bao M. Y., Xie H. T., Gao P., Mao X., Li Z.Y., Wang W. H., Sopheak S., et al. Current diagnosis and potential obstacles for post-neurosurgical bacterial meningitis. Eur Rev Med Pharmacol Sci. 2022; 26 (17): 6351–6360. DOI: 10.26355/eurrev_202209_29661. PMID: 36111937.
Review
For citations:
Aybazova M.I., Shmidt L.A., Dryagina N.V., Borisova E.S., Krivchikova K.A., Goncharuk N.V., Tsentsiper L.M., Kondratyev A.N. The Potential for Improving the Diagnostics of Nosocomial Meningitis and Ventriculitis. General Reanimatology. 2025;21(5):26-34. (In Russ.) https://doi.org/10.15360/1813-9779-2025-5-26-34





































