Preview

General Reanimatology

Advanced search

Informativeness of Immunological Predictors of Prolonged and Chronic Critical Illness Outcome is Limited by Patient’s Genotype

https://doi.org/10.15360/1813-9779-2025-6-2599

Abstract

The aim of the study was to determine the contribution of cellular immune system parameters and the AQP4 (rs1058427) genetic polymorphism to the prognosis of course and outcome of patients with sequelae of severe brain injury (SBI), including patients who developed pneumonia.
Materials and Methods. The study included 464 intensive care unit (ICU) patients with prolonged or chronic critical illness (PCCI) admitted to the Federal Scientific and Clinical Center of Intensive Care Medicine and Rehabilitology (FSCCICMR) following SBI (strokes, traumatic brain and combined injuries, post-operative anoxic conditions, brain tumor surgery). Variants of the rs1058427 single-nucleotide polymorphism in the AQP4 gene were detected in DNA isolated from whole blood with organic solvents and using genotyping with tetraprimer PCR followed by electrophoretic identification of the products.
Results. The entire cohort was divided into three groups of patients: those admitted without signs of pneumonia in the first 48 hours of hospitalization but who developed nosocomial pneumonia after 48 hours (group 1); admitted without signs of pneumonia, in whom no signs of pneumonia were detected throughout the hospitalization (group 2); with pneumonia diagnosed upon admission, which developed in the previous medical institution prior to transferring to the FSCCICMR (group 3). For the cohort combining groups 1 and 2 (admitted without signs of pneumonia), increased values of the neutrophil-to-lymphocyte ratio (NLR) (OR = 1.8, 95% CI: 1.1–3.9, P = 0.0175, χ², N = 272) and neutrophil count (OR = 2.1, 95% CI: 1.3–3.5, P = 0.0038, χ², N = 272) on the first day of hospitalization were associated with an increased risk of pneumonia. In the same cohort, elevated neutrophil counts (over 6×10⁹/L) at admission significantly predicted adverse outcome, but only in the subgroup of patients with the AQP4 rs1058427 GG major genotype (95% CI: 1.0–4.5, HR = 2.1, P = 0.049, log-rank test). In group 3 (patients with pneumonia diagnosed upon admission), a significant association with adverse outcome was found for both neutrophils and NLR (HR = 3.1, 95% CI: 1.3–6.9, P = 0.019, log-rank test, N = 149, and HR = 2.9, 95% CI: 1.3–6.6, P = 0.026, log-rank test, N = 149, respectively) in patients with AQP4 GG genotype, not in alternative AQP4 allele T carriers. Thus, the prognostic value of elevated neutrophil counts in patients with PCCI («immunophenotype») depends significantly on the genetic polymorphism of AQP4, a gene that controls the initiation of immune cell migration and is pathogenically significant for the development of the infectious process.
Conclusion. For patients with consequences of SBI in PCCI, an increase in neutrophil counts above 6×10⁹/L upon hospitalization significantly predicts an adverse outcome only in patients homozygous for the AQP4 rs1058427 G allele (GG genotype). The unique genetically restricted clinical and laboratory phenotype («gene-immunophenotype») could be considered in personalized critical care medicine as an example of a candidate predicting paradigm.

About the Authors

V. M. Pisarev
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Ministry of Education and Science of Russia
Russian Federation

Vladimir M. Pisarev

25 Petrovka Str., Bldg. 2, 107031 Moscow



A. G. Chumachenko
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Ministry of Education and Science of Russia
Russian Federation

Anastasia G. Chumachenko

25 Petrovka Str., Bldg. 2, 107031 Moscow



A. R. Kalov
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Ministry of Education and Science of Russia
Russian Federation

Amirkhan R. Kalov

25 Petrovka Str., Bldg. 2, 107031 Moscow



A. V. Ilyichev
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Ministry of Education and Science of Russia
Russian Federation

Alexander V. Ilyichev

25 Petrovka Str., Bldg. 2, 107031 Moscow



V. E. Zakharchenko
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Ministry of Education and Science of Russia
Russian Federation

Vladislav E. Zakharchenko

25 Petrovka Str., Bldg. 2, 107031 Moscow



M. V. Petrova
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Ministry of Education and Science of Russia
Russian Federation

Marina V. Petrova

25 Petrovka Str., Bldg. 2, 107031 Moscow



References

1. Golubev A. M. Personalized critical care medicine (review). General Reanimatology = Obshchaya Reanimatologiya. 2022; 18 (4): 45–54. (in Russ.&Eng.). DOI: 10.15360/1813-9779-2022-4-45-54.

2. Likhvantsev V. V., Berikashvili L. B., Yadgarov M. Y., Yakovlev A. A., Kuzovlev A. N. The thri-steps model of critical conditions in intensive care: introducing a new paradigm for chronic critical illness. J Clin Med. 2024; 13 (13): 3683. DOI: 10.3390/jcm13133683. PMID: 38999249.

3. Parfenov A. L., Petrova M. V., Pichugina I. M., Luginina E. V. Comorbidity development in patients with severe brain injury resulting in chronic critical condition (review). General Reanimatology = Obshchaya Reanimatologiya. 2020; 16 (4): 72–89. (in Russ.&Eng.). DOI: 10.15360/1813-9779-2020-4-72-89.

4. Niederman M. S., Torres A. Severe community-acquired pneumonia. Eur Respir Rev. 2022; 31: 220123. DOI: 10.1183/16000617.0123-2022. PMID: 36517046.

5. Méndez R., Menéndez R., Cillóniz C., Amara-Elori I., Amaro R., González P., Posadas T., et al. Initial inflammatory profile in community-acquired pneumonia depends on time since onset of symptoms. Am J Respir Crit Care Med. 2018; 198 (3): 370–378. DOI: 10.1164/rccm.201709-1908OC. PMID: 29509439.

6. Beloborodova N. V., Grechko A. V., Gurkova M. M., Zurabov A. Yu., Zurabov F. M., Kuzovlev A. N., Megley A. Yu., et al. Adaptive phage therapy in the treatment of patients with recurrent pneumonia (pilot study). General Reanimatology = Obshchaya Reanimatologiya. 2021; 17 (6): 4–14. (in Russ.&Eng.). DOI: 10.15360/1813-9779-2021-6-4-14.

7. Fukuda A. M., Badaut J. Aquaporin 4: a player in cerebral edema and neuroinflammation. J Neuroinflammation. 2012; 9: 279. DOI: 10.1186/1742-2094-9-279.

8. Angkananard T., Anothaisintawee T., McEvoy M., Attia J., Thakkinstian A. Neutrophil lymphocyte ratio and cardiovascular disease risk: a systematic review and meta-analysis. Biomed Res Int. 2018; 2018: 2703518. DOI: 10.1155/2018/2703518. PMID: 30534554.

9. Li X., Liu C., Mao Z., Xiao M., Wang L., Qi S., Zhou F. Predictive values of neutrophil-to-lymphocyte ratio on disease severity and mortality in COVID-19 patients: a systematic review and metaanalysis. Crit Care. 2020; 24 (1): 647. DOI: 10.1186/s13054-020-03374-8. PMID: 33198786.

10. Liu C. C., Ko H.J., Liu W. S., Hung C.-L., Hu K.-C., Yu L.-Y, Shih S.-C. Neutrophil-to-lymphocyte ratio as a predictive marker of metabolic syndrome. Medicine (Baltimore). 2019; 98 (43): e17537. DOI: 10.1097/MD.0000000000017537. PMID: 31651856.

11. Erre G. L., Paliogiannis P., Castagna F., Mangoni A.A., Carru C., Passiu G., Zinellu A. Meta-analysis of neutrophil-to-lymphocyte and platelet-to-lymphocyte ratio in rheumatoid arthritis. Eur J Clin Invest. 2019; 49 (1): e13037. DOI: 10.1111/eci.13037. PMID: 30316204.

12. Yin X., Wu L., Yang H., Yang H. Prognostic significance of neutrophillymphocyte ratio (NLR) in patients with ovarian cancer: a systematic review and meta-analysis. Medicine (Baltimore). 2019; 98 (45): e17475. DOI: 10.1097/MD.0000000000017475. PMID: 31702609.

13. Mellor K. L., Powell A. G.M.T., Lewis W. G. Systematic review and meta-analysis of the prognostic significance of neutrophil-lymphocyte ratio (NLR) after R0 gastrectomy for cancer. J Gastrointest Cancer. 2018; 49 (3): 237–244. DOI: 10.1007/s12029-018-0127-y. PMID: 29949048.

14. Lunkov V. D., Maevskaya M. V., Tsvetaeva E. K., Mendez A. G., Zharkova M. S., Tkachenko P. E., Ivashkin V. T. Neutrophil to lymphocyte ratio as a predictor of adverse outcome in patients with decompensated liver cirrhosis. Russian Journal of Gastroenterology, Hepatology, Coloproctology = Rossiyskiy Zhurnal Gastroenterologii, Gepatologii, Koloproktologii. 2019; 29 (1): 47–61. (In Russ.). DOI: 10.22416/1382-4376-2019-29-1-47-61.

15. Dilektasli E., Inaba K., Haltmeier T., Wong M. D., Clark D., Benjamin E. R., Lam L., Demetriades D. The prognostic value of neutrophil-to-lymphocyte ratio on mortality in critically ill trauma patients. J Trauma Acute Care Surg. 2016; 81 (5): 882–888. DOI: 10.1097/TA.0000000000000980. PMID: 26825931.

16. Song M., Graubard B. I., Rabkin C. S., Engels E. A. Neutrophil-tolymphocyte ratio and mortality in the United States general population. Sci Rep. 2021; 11 (1): 464. DOI: 10.1038/s41598-020-79431-7. PMID: 33431958.

17. Fetlam D. L., Chumachenko A. G., Vyazmina M. D., Kuzovlev A. N., Moroz V. V., Pisarev V. M. Prognostic markers of acute suppurative lung disease. 2024; 20 (2): 14–28. General Reanimatology = Obshchaya Reanimatologiya. (in Russ.&Eng.). DOI: 10.15360/1813-9779-2024-2-14-28.

18. Balta S., Celik T., Mikhailidis D. P., Ozturk C., Demirkol S., Aparci M., Iyisoy A. The relation between atherosclerosis and the neutrophil-lymphocyte ratio. Clin Appl Thromb Hemost. 2016; 22 (5): 405–11. DOI: 10.1177/1076029615569568. PMID: 25667237.

19. Langley B. O., Guedry S. E., Goldenberg J. Z., Hanes D. A., Beardsley J. A, Ryan J. J. Inflammatory bowel disease and neutrophil-lymphocyte ratio: a systematic scoping review. J Clin Med. 2021; 10 (18): 4219. DOI: 10.3390/jcm10184219. PMID: 34575330.

20. Zahorec R. Neutrophil-to-lymphocyte ratio, past, present and future perspectives. Bratisl Lek Listy. 2021; 122 (7): 474–488. DOI: 10.4149/BLL_2021_078. PMID: 34161115.

21. Zhang H., Wang Y., Qu M., Li W., Wu D., Cata J. P., Miao C. Neutrophil, neutrophil extracellular traps and endothelial cell dysfunction in sepsis. Clin Transl Med. 2023; 13 (1): e1170. DOI: 10.1002/ctm2.1170. PMID: 36629024.

22. Meizlish M. L., Pine A. B.,, Bishai J.D., Goshua G., Nadelmann E. R., Simonov M., Chang C.-H., et al. A neutrophil activation signature predicts critical illness and mortality in COVID-19. Blood Adv. 2021; 5 (5): 1164–1177. DOI: 10.1182/bloodadvances.2020003568. PMID: 33635335.

23. Appelboom G., Bruce S., Duren A., Piazza M., Monahan A., Christophe B., Zoller S., et al. Aquaporin-4 gene variant independently associated with oedema after intracerebral haemorrhage. Neurol Res. 2015; 37 (8): 657–661. DOI: 10.1179/1743132815Y.0000000047. PMID: 26000774.

24. Chumachenko A. G., Grigoriev E. K., Cherpakov R. A., Tyurin I. N., Pisarev V. M. Sepsis course and outcome depends on the genetic variant of the 3` region of aquaporin 4 gene AQP4 and comorbidities. General Reanimatology = Obshchaya Reanimatologiya. 2023; 19 (5): 4–12. (in Russ.&Eng.). DOI: 10.15360/1813-9779-2023-5-2291.

25. Pisarev V. M., Chumachenko A. G., Fetlam D. L., Grechko A. V. Patent. Method for predicting the development of pulmonary hypertension in pleural empyema. RU 2 825 056 Ru. Date of registration: 19.08.2024. (in Rus.). https://www1.fips.ru/iiss/document.xhtml?faces-redirect=true&id=d19d3615c3588c06af506ef017193a3f. https://elibrary.ru/item.asp?id=69717500.

26. Forget P., Khalifa C., Defour J. P., Latinne D., Van Pel M. C., De Kock M. What is the normal value of the neutrophil-to-lymphocyte ratio? BMC Res Notes. 2017; 10 (1): 12. DOI: 10.1186/s13104-016-2335-5. PMID: 28057051.

27. Akkari L., Amit I., Bronte V., Fridlender Z. G., Gabrilovich D. I., Ginhoux F., Hedrick C. C., et al. Defining myeloid-derived suppressor cells. Nat Rev Immunol. 2024; 24 (12): 850–857. DOI: 10.1038/s41577-024-01062-0. PMID: 38969773.

28. Eruslanov E., Nefedova Y., Gabrilovich D. I. The heterogeneity of neutrophils in cancer and its implication for therapeutic targeting. Nat Immunol. 2025; 26 (1): 17–28. DOI: 10.1038/s41590-024-02029-y. PMID: 39747431.

29. Brown K. A., Brain S. D., Pearson J. D. Neutrophils in development of multiple organ failure in sepsis. Lancet. 2006; 368 (9530): 157–169. DOI: 10.1016/S0140-6736 (06)69005-3. PMID: 16829300.

30. Gaponov A. M., Pisarev V. M., Tutelyan A. V. Suppression of T-cell responses by GM-CSF-induced granulocytic myeloid regulatory cells activated by bacterial lipopolysaccharide. Russian Journal of Immunology = Ross Immunol Zhurnal. 2019; 13 (4): 1450–1453. (in Russ.). DOI: 10.31857/S102872210007054-4.

31. Cummings M. J., Guichard V., Owor N., Ochar T., Kiwubeyi M., Nankwanga R., Kibisi R., et al. Heterogeneous expansion of polymorphonuclear myeloid-derived suppressor cells distinguishes high-risk sepsis immunophenotypes in Uganda. Shock. 2024; 62 (3): 336–343. DOI: 10.1097/SHK.0000000000002403. PMID: 39012778.

32. Buonacera A., Stancanelli B., Colaci M., Malatino L. Neutrophil to lymphocyte ratio: an emerging marker of the relationships between the immune system and diseases. Int J Mol Sci. 2022; 23 (7): 3636. DOI: 10.3390/ijms23073636.

33. Abdelaleem N.A., Makhlouf H.A., Nagiub E.M., Bayoumi H.A. Prognostic biomarkers in predicting mortality in respiratory patients with ventilator-associated pneumonia. Egypt J Bronchol. 2021; 15 (1): 16. DOI: 10.1186/s43168-021-00062-1.

34. Nam K.-W., Kim T. J., Lee J. S., Hyung-Min Kwon H. M., Lee Y.-S., Ko S.-B., et al. High neutrophil-to-lymphocyte ratio predicts strokeassociated pneumonia. Stroke. 2018; 49: 1886–1892. DOI: 10.1161/STROKEAHA.118.021228. PMID: 29967014.

35. Li Y., Liu C., Xiao W., Tiantian Song T., Shuhui Wang S. Incidence, risk factors, and outcomes of ventilator-associated pneumonia in traumatic brain injury: a meta-analysis. Neurocrit Care. 2020; 32 (1): 272–285. DOI: 10.1007/s12028-019-00773-w. PMID: 31300956.

36. Feng D.-Y., Zhou Y.-Q., Zhou M., Zou X.-L., Wang Y.-H., Zhang T.-T. Risk factors for mortality due to ventilator-associated pneumonia in a Chinese hospital: a retrospective study. Med Sci Monit. 2019; 25: 7660–7665. DOI: 10.12659/MSM.916356. PMID: 31605472.

37. Sabouri E., Majdi A., Jangjui P., Aghsan S. R., Alavi S. A. N. Neutrophil-to-lymphocyte ratio and traumatic brain injury: a review study. World Neurosurg. 2020; 140: 142–147. DOI: 10.1016/j.wneu.2020.04.185. PMID: 32360917.

38. Nicosia M., Lee J., Beavers A., Kish D., Farr G. W., McGuirk P. R., Pelletier M. F., et al. Water channel aquaporin 4 is required for T cell receptor mediated lymphocyte activation. J Leukoc Biol. 2023; 113 (6): 544–554. DOI: 10.1093/jleuko/qiad010. PMID: 36805947.

39. Wang L., Song Q., Wang C., Wu S., Deng L., Li Y., Zheng L., et al. Neutrophil to lymphocyte ratio predicts poor outcomes after acute ischemic stroke: A cohort study and systematic review. J Neurol Sci. 2019; 406: 116445. DOI: 10.1016/j.jns.2019.116445. PMID: 31521961.

40. Kumar A., Rahul, Kanika, Kumar J., Ahmad A., Ali A., Kumar B., et al. Engineered drug-amphiphile conjugate nanoparticles for targeted inhibition of AQP4-mediated NLRP3 inflammasome signaling in collagen-induced rheumatoid arthritis. ACS Appl Mater Interfaces. 2025; 17 (11): 16590-16601. DOI: 10.1021/acsami.4c20973. PMID: 40038599.

41. Seymour C. W., Kennedy J. N., Wang S., Chang C. H., Elliott C. F., Xu Z., Berry S., et al. Derivation, validation, and potential treatment implications of novel clinical phenotypes for sepsis. JAMA. 2019; 321 (20): 2003–2017. DOI: 10.1001/jama.2019.5791. PMID: 31104070.

42. Bruse N., Kooistra E. J., Jansen A., van Amstel R. B. E., de Keizer N. F., Kennedy J. N., Seymour C., et al. Clinical sepsis phenotypes in critically ill COVID-19 patients. Crit Care. 2022; 26 (1): 244. DOI: 10.1186/s13054-022-04118-6. PMID: 35945618.

43. Reddy K., Sinha P., O’Kane C. M., Gordon A. C., Calfee C. S., McAuley D. F. Subphenotypes in critical care: translation into clinical practice. Lancet Respir Med. 2020; 8 (6): 631–643. DOI: 10.1016/S2213-2600 (20)30124-7. PMID: 32526190.

44. Ruslyakova I. A., Shamsutdinova E. Z., Gaikovaya L. B. Relationship between sepsis phenotypes and treatment characteristics of patients with viral and bacterial pneumonia. General Reanimatology = Obshchaya Reanimatologiya. 2024; 20 (2): 29–39. (in Russ.&Eng.). DOI: 10.15360/1813-9779-2024-2-29-40.

45. Kovzel V. A., Davydova L. A., Lapina T. A., Semushkina A. A., Gutnikov A. I. Genetic, metabolic, and proteomic polymorphisms and clinical phenotypes of sepsis. General Reanimatology = Obshchaya Reanimatologiya. 2024; 20 (6): 36–53. (in Russ.&Eng.). DOI: 10.15360/1813-9779-2024-6-2470.


Review

For citations:


Pisarev V.M., Chumachenko A.G., Kalov A.R., Ilyichev A.V., Zakharchenko V.E., Petrova M.V. Informativeness of Immunological Predictors of Prolonged and Chronic Critical Illness Outcome is Limited by Patient’s Genotype. General Reanimatology. 2025;21(6):22-34. (In Russ.) https://doi.org/10.15360/1813-9779-2025-6-2599

Views: 49


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)