Preview

Общая реаниматология

Расширенный поиск

Механизмы вторичного повреждения нейронов при тяжелой черепно-мозговой травме (часть 2)

https://doi.org/10.15360/1813-9779-2011-5-42

Полный текст:

Аннотация

Обзор посвящен механизмам вторичного гипоксически-ишемического повреждения головного мозга при тяжелой черепно-мозговой травме. Приводятся новые данные по механизмам глутамат-кальциевого повреждения нейронов, и оксидантного стресса. Ключевые слова: центральная нервная система, черепно-мозговая травма, гипоксия, ишемия, глутамат-кальциевый каскад, оксидантный стресс.

Список литературы

1. Tonder N., Johansen F. F., Frederickson C. J. et al.

2. Bitanihirwe B. K., Cunningham M. G.Zinc: the brain’s dark horse. Synapse 2009; 63 (11): 1029—1049.

3. Yuan H., Vance K. M., Junge C. E. et al.The serine protease plasmin cleaves the amino-terminal domain of the NR2A subunit to relieve zinc inhibition of the N-methyl-D-aspartate receptors. J. Biol. Chem. 2009; 284 (19): 12862—1287

4. Doering P., Stoltenberg M., Penkowa M. et al.Chemical blocking of zinc ions in CNS increases neuronal damage following traumatic brain injury (TBI) in mice. PLoS One 2010; 5 (4): e10131.

5. Choi D. W, Koh J. Y.Zinc and braine injury. Annu. Rev. Neurosci. 1998; 21: 347—37

6. Stork C. J., Li Y. V.Rising zinc: a significant cause of ischemic neuronal death in the CA1 region of rat hippocampus. J. Cereb. Blood Flow Metab. 2009; 29 (8): 1399—1408.

7. Чистяков В. А.Неспецифические механизмы защиты от деструктивного действия активных форм кислорода. Успехи современной биологии 2008; 128 (3): 300—306.

8. Shin B. S., Won S. J., Yoo B. H. et al.Prevention of hypoglycemia-induced neuronal death by hypothermia. J. Cereb. Blood Flow Metab. 2010; 30 (2): 390—402.

9. Aguilar-Alonso P., Martinez-Fong D., Pazos-Salazar N. G. et al.The increase in zinc levels and upregulation of zinc transporters are mediated by nitric oxide in the cerebral cortex after transient ischemia in the rat. Brain Res. 2008; 1200: 89-98.

10. Sheline C. T., Cai A. L., Zhu J., Shi C.Serum or target deprivation-induced neuronal death causes oxidative neuronal accumulation of Zn2+ and loss of NAD+. Eur. J. Neurosci. 2010; 32 (6): 894—904.

11. Bishop G. M., Dringen R., Robinson S. R.Zinc stimulates the production of toxic reactive oxygen species (ROS) and inhibits glutathione reduc-tase in astrocytes. Free Radic. Biol. Med. 2007; 42 (8): 1222—1230.

12. Hershfinkel M., Kandler K., Knoch M. E. et al.Intracellular zinc inhibits KCC2 transporter activity. Nat. Neurosci. 2009; 12 (6); 725—727.

13. Kauppinen T. M., Higashi Y., Suh S. W. et al.Zinc triggers microglial activation. J. Neurosci. 2008; 28 (22): 5827—5835.

14. Kellermann K., Gordan M. L., Nollert G. et al.Long-term assessment of NFkappaB expression in the brain and neurologic outcome following deep hypothermic circulatory arrest in rats. Perfusion. 2009; 24 (6): 429—436.

15. Inayat-Hussain S. H., Chan K. M., Rajab N. F. et al.Goniothalamin-induced oxidative stress, DNA damage and apoptosis via caspase-2 independent and Bcl-2 independent pathways in Jurkat T-cells. Toxicol. Lett. 2010; 193 (1): 108—114.

16. Pallast S., Arai K., Pekcec A.Increased nuclear apoptosis-inducing factor after transient focal ischemia: a 12/15—lipoxygenase-dependent organelle damage pathway. J. Cereb. Blood Flow Metab. 2010; 30 ( 6): 1157—1167.

17. Kishimoto K., Li R. C., Zhang J. et al.Cytosolic phospholipase A2 alpha amplifies early cyclooxygenase-2 expression, oxidative stress and MAP kinase phosphorylation after cerebral ischemia in mice. J. Neuroinflammation 2010; 7: 42.

18. Titsworth W. L., Liu N. K., Xu X. M.Role of secretory phospholipase a(2) in CNS inflammation: implications in traumatic spinal cord injury. CNS Neurol. Disord. Drug Targets 2008; 7 (3): 254—269.

19. Shirakawa H., Sakimoto S., Nakao K. et al.Transient receptor potential canonical 3 (TRPC3) mediates thrombin-induced astrocyte activation and upregulates its own expression in cortical astrocytes. J. Neurosci. 2010; 30 (39): 13116—13129.

20. Chen S. D., Lin T. K., Lin J. W. et al.Activation of calcium/calmodulin-depen-dent protein kinase IV and peroxisome proliferator-activated receptor gamma coactivator-1alpha signaling pathway protects against neuronal injury and promotes mitochondrial biogenesis in the hippocampal CA1 subfield after transient global ischemia. J. Neurosci. Res. 2010; 88 (14): 3144—3154.

21. Strokin M., Chechneva O., Reymann K. G., Reiser G.Neuroprotection of rat hippocampal slices exposed to oxygen-glucose deprivation by enrichment with docosahexaenoic acid and by inhibition of hydrolysis of docosahexaenoic acid-containing phospholipids by calcium independent phospholipase A2. Neuroscience 2006; 140 (2): 547—553.

22. Hoda M. N., Singh I., Singh A. K., Khan M.Reduction of lipoxidative load by secretory phospholipase A2 inhibition protects against neu-rovascular injury following experimental stroke in rat. J. Neuroinflammation 2009; 6: 21—26.

23. Меньшикова Е. Б., Ланкин В. З., Зенков Н. К. и соавт.Окислительный стресс: прооксиданты и антиоксиданты. М.: Слово; 2006.

24. Ашмарин И. П., Стукалов В. П., Ещенко Н. Д.Биохимия мозга. СПб.: изд-во Санкт-Петербургского университета; 1999.

25. Calabrese V., Guagliano E., Sapienza M. et al.Redox regulation of cellular stress response in neurodegenerative disorders. Ital. J. Biochem. 2006; 55 (3—4): 263—282.

26. Hong Y., Yan W., Chen S. et al.The role of Nrf2 signaling in the regulation of antioxidants and detoxifying enzymes after traumatic brain injury in rats and mice. Acta Pharmacol. Sin. 2010; 31 (11): 1421—1430.

27. Дас Д. К., Молик Н.Превращение сигнала гибели в сигнал выживания при редокс- сигнализации. Биохимия 2004; 69 (1): 16—24.

28. Petrushanko I., Bogdanov N., Bulygina E. et al.Na-K-ATPase in rat cere-bellar granule cells is redox sensitive. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006; 290 (4): R916—R925.

29. БулыгинаЕ. Р., ЛяпинаЛ. Ю., БолдыревА. А.Активация глутамат-ных рецепторов ингибирует Na/K-ATPазу гранулярных клеток мозжечка. Биохимия 2002; 67 (9): 1209—1214.

30. Frangogiannis N. G.Chemokines in ischemia and reperfusion. Thromb Haemost. 2007; 97 (5): 738—747.

31. Kahles T., Luedike P., Endres M. et al.NADPH oxidase plays a central role in blood-brain barrier damage in experimental stroke. Stroke 2007; 38 (11): 3000—3006.

32. Kutsuna S., Tsuruta R., Fujita M. et al.Cholinergic agonist physostig-mine suppresses excessive superoxide anion radical generation in blood, oxidative stress, early inflammation, and endothelial injury in rats with forebrain ischemia/reperfusion. Brain Res. 2010; 1313: 242—249.

33. Weydert C. J, Cullen J.J.Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat. Protoc. 2010; 5 (1): 51—66.

34. Saran M.To what end does nature produce superoxide? NADPH oxi-dase as an autocrine modifier of membrane phospholipids generating paracrine lipid messengers. Free Radic. Res. 2003; 37 (10): 1045—1059.

35. Segal A. W.How neutrophils kill microbes. Annu. Rev. Immunol. 2005; 23: 197—223.

36. Feeney C. J., Frantseva M. V., Carlen P. L. et al.Vulnerability of glial cells to hydrogen peroxide in cultured hippocampal slices. Brain Res. 2008; 1198: 1 — 15.

37. Chan E. C., Jiang F., Peshavariya H. M., Dusting G. J.Regulation of cell proliferation by NADPH oxidase-mediated signaling: potential roles in tissue repair, regenerative medicine and tissue engineering. Pharmacol. Ther. 2009; 122 (2): 97—108.

38. Дубинина Е. Е., Гавровская С. В., Кузьмич Е. В. и соавт.Окислительная модификация белков: окисление триптофана и образование би-тирозина в неощищенных делках с использованием системы Фен-тона. Биохимия 2002; 67 (3): 413—421.

39. Sesti F., Liu S., Cai S. Q.Oxidation of potassium channels by ROS: a general mechanism of aging and neurodegeneration? Trends Cell Biol. 2010; 20 (1): 45—51.

40. Ansar M. A., Roberts K. N., Scheff S. W.Oxidative stress and modification of synaptic proteins in hippocampus after traumatic brain injury. Free Radic. Biol. Med. 2008; 45 (4): 443—452.

41. Nowak T. S., Kiessling J. M.Reprogramming of gene expression after ischemia. In: Cerebral Ischemia. W. Walz (ed.). New Jersey, Totowa: Humana Press; 1999.

42. Hardingham G. E.Coupling of the NMDA receptor to neuroprotective and neurodestructive events. Biochem. Soc. Trans. 2009; 37 (Pt 6): 1147—1160.

43. Vicente E., Degerone D., Bohn L. 6t al.Astroglial and cognitive effects of chronic cerebral hypoperfusion in the rat. Brain Res. 2009; 1251: 204—212.

44. Раевский К. С., Башкатова В. Г., Ванин А. Ф.Роль оксида азота в глу-таматэргической патологии мозга. Вестник РАМН 2000; 4: 11—15.

45. Silverman R. B.Design of selective neuronal nitric oxide synthase inhibitors for the prevention and treatment of neurodegenerative diseases. Acc. Chem. Res. 2009; 42 (3): 439—451.

46. Boultadakis A., Liakos P., Pitsikas N.The nitric oxide-releasing derivative of ferulic acid NCX 2057 antagonized delay-dependent and scopolamine-induced performance deficits in a recognition memory task in the rat. Prog. Neuropsychopharmacol. Biol. Psychiatry 2010; 34 (1): 5—9.

47. Haase N., Haase T., Seeanner M., Behrends S.Nitric oxide sensitive guanylyl cyclase activity decreases during cerebral postnatal development because of a reduction in heterodimerization. J. Neurochem. 2010; 112 (2): 542—551.

48. de Bittencourt-Navarrete R. E., do Nascimento I. C., Santiago M. F., Mendez-Otero R.NMDA receptor blockade alters the intracellular distribution of neuronal nitric oxide synthase in the superficial layers of the rat superior colliculus. Braz. J. Med. Biol. Res. 2009; 42 (2): 189—196.

49. Matsunaga T., Arakaki M., Kamiya T. et al.Nitric oxide mitigates apop-tosis in human endothelial cells induced by 9,10—phenanthrenequinone: role of proteasomal function. Toxicology 2010; 268 (3): 191—197.

50. Toda N., Ayajiki K., Okamura T.Cerebral blood flow regulation by nitric oxide: recent advances. Pharmacol. Rev. 2009; 61 (1): 62—97.

51. Aruna Devi R., Ramteke V. D., Kumar S. et al.Neuroprotective effect of s-methylisothiourea in transient focal cerebral ischemia in rat. Nitric Oxide 2010; 22 (1): 1 — 10.

52. Lundblad C., Grinde P. O., Bentzer P.Hemodynamic and histological effects of traumatic brain injury in eNOS-deficient mice. J. Neurotrauma 2009; 26 (11): 1953—1962.

53. Cai H. X., Li Z. R., Cheng Y. B. et al.Time-order expression of caspase-3 and iNOS in contused human brain tissue. Fa Yi Xue Za Zhi 2009; 25 (4): 241—245.

54. Deng Y., Fang W., Li Y. et al.Blood-brain barrier breakdown by PAF and protection by XQ-1H due to antagonism of PAF effects. Eur. J. Pharmacol. 2009; 616 (1—3): 43—47.

55. Sabri M., Ai J., Knight B. et al.Uncoupling of endothelial nitric oxide synthase after experimental subarachnoid hemorrhage. J. Cereb. Blood Flow Metab. 2010; 31 (1): 190—199.

56. Lata S., Aruna Devi R., Bhadoria B. K. et al.Neuroprotective effect of 5,7,3′,4′,5′-pentahydroxy dihydroflavanol-3—O-(2»-O-galloyl)-beta-D-glucopyranoside, a polyphenolic compound in focal cerebral ischemia in rat. Eur. J. Pharmacol. 2010; 626 (2—3): 205—212.

57. Zhuang P., Ji H., Zhang Y. H. et al.ZJM-289, a novel nitric oxide donor, alleviates the cerebral ischemic-reperfusion injury in rats. Clin. Exp. Pharmacol. Physiol. 2009; 87 (12): 85—89.

58. Amantea D., Bagetta G., Tassorelli C. et al.Identification of distinct cellular pools of interleukin-1beta during the evolution of the neuroin-flammatory response induced by transient middle cerebral artery occlusion in the brain of rat. Brain Res. 2010; 1313: 259—269.

59. Жукова А. Г., Сазонтова Т. А., Заржецкий Ю. В. и соавт.Тканеспе-цифичность ответа системы про- и антиоксидантов после реанимации. Общая реаниматология 2005; I (3): 37—41.

60. Saleh M. C., Connell B. J., Saleh T. M.Ischemic tolerance following low dose NMDA involves modulation of cellular stress proteins. Brain Res. 2009; 1247: 212—220.


Для цитирования:


Мороз В.В., Кармен Н.Б., Маевский Е.И. Механизмы вторичного повреждения нейронов при тяжелой черепно-мозговой травме (часть 2) . Общая реаниматология. 2011;7(5):42. https://doi.org/10.15360/1813-9779-2011-5-42

For citation:


Moroz V.V., Karmen N.B., Mayevsky E.I. Mechanisms of Secondary Neuronal Damage in Severe Brain Injury (Part 2) . General Reanimatology. 2011;7(5):42. (In Russ.) https://doi.org/10.15360/1813-9779-2011-5-42

Просмотров: 371


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)