Preview

General Reanimatology

Advanced search

Mechanisms of Impaired Erythropoiesis in Sepsis

https://doi.org/10.15360/1813-9779-2008-1-55

Abstract

Objective: to determine the mechanisms responsible for impairments in the space-time organization of erythropoiesis (SPOE) in experimental sepsis. Materials and methods. The diurnal changes in the titer of erythropoietin, the content of red blood cells, and their distribution by volume, the peripheral blood levels of hemoglobin and reticulocytes, life span, the production of erythrocytes, malonic dialdehyde (MDA), the statokinetic erythroid cell index, and bone marrow 59Fe incorporation were studied in 240 Wistar rats with multimicroial sepsis and 80 intact animals. Results. In sepsis, SPOE desynchronism was found to be due to increases in MDA and in the population of microcytes with shorter life span. The maximum duration was increased for erythropoiesis and decreased for erythrocytic production with the decreased peripheral blood level of ery-throcytes and hemoglobin. The progressive rise in the titer of erythropoiesis was accompanied by decreases in the statoki-netic index and bone marrow 59Fe incorporation with a simultaneous increase in the population of microcytes and with a reduction in the life span of erythrocytes. Conclusion. Endotoxicosis was established to play the leading role in the mechanisms of SPOE desynchronism. Activation of lipid peroxidation in the red blood cell membranes enhances their rigidity, by initiating the development of anemia and microcirculatory disorders. The decreases in erythrocytic production, statokinetic index, and bone marrow 59Fe incorporation with an inadequately high titer of erythropoiesis suggest the inhibition of ery-thropoietin-dependent processes in the target cells, which promotes the progression of septic anemia. Key words: bio-rhythms, erythropoiesis, erythropoietin, anemia, sepsis.

References

1. Aird W.

2. Cadi P., Claessens Y., Cariou A., Safran D.Severe bone marrow necrosis associated with septic shock in the intensive care. Ann. Fr. Anesth. Reanim. 2004; 5: 501—504.

3. Goyette R. E., Key N. S., Ely E.Hematologic changes in sepsis and their therapeutic implications. Semin Respir. Crit. Care Med. 2004; 6: 645—659.

4. CondonМ., Kim J., Deitch E. et al.Appearance of an erythrocyte population with decreased deformability and hemoglobin content following sepsis. Am. J. Heart Circ. Physiol. 2003; 6: 2177—218

5. PoschJ., Leray C., Ruef P. et al.Endotoxin binding to erythrocyte membrane and еrythrocуte deformability in human sepsis andin vitro.Crit. Care Med. 2003; 3: 924—928.

6. Fowler R. A., Rizoli S. B., Levin P. D., Smith T.Blood conservation for critically ill patients. Crit. Care Clin. 2004; 2: 313—324.

7. Tamion F., Menard J. F., Girault C. et al.Erythropoietin and renin as biological markers in critically ill patients. Crit. Care Med. 2004; 8: 328—335.

8. Tamion F., Le Cam-Duchez V., MenardJ. et. al.Serum erythropoietin levels in septic shock. Anaesth. Intensive Care 2005; 5: 578—584.

9. Napolitano L. M.Current status of blood component therapy in surgical critical care. Curr. Opin Crit. Care 2004; 5: 311—317.

10. Zimmerman J. L.Use of blood products in sepsis: an evidence-based review. Crit. Care Med. 2004; 11 Suppl.: 542—547.

11. Баркова Э. Н., Черноглазова О. В.Механизмы репаративных реакций эритрона при экстремальных воздействиях. Бюл. СО АМН СССР 1986; 3: 76—78.

12. Баркова Э. Н., Жданова Е. В., Курлович Н. А.Хронофизиология и хронопатология обмена железа. Екатеринбург: Полиграфист; 2001.

13. Baker C., Chaudry I., Gaines H. et al.Evaluation of factors affecting mortality-rate after sepsis in a murine cecal ligation and puncture model. Surgery1983; 94: 331—335.

14. Мосягина Е. Н.Нормальное кроветворение и его регуляция. Под ред. Н. А. Федорова. М.: Медицина; 1976. 341—363.

15. Козинец Г. И., Тюбиана М., Фриндель Э.Исследование динамики эритропоэза с помощью тимидина-Н3, Fe59и эритропоэтина. Мед. радиология 1963; 6: 60—63.

16. Стальная И. Д.Современные методы в биохимии. М.: Медицина; 1977: 63-66.

17. Spolarics Z., Siddiqi M., Siegel J. et al.Increased incidence of sepsis and altered mono-cyte functions in severely injured type A-glucose-6-phos-phate dehydrogenase-defici-ent african american trauma patients. Crit. Care Med. 2001; 29: 728—736.

18. Bratosin D., Mazurier J., Tissier J. et al.Cellular and molecular mechanisms of sensecent erythrocyte phagocytosis by macrophages. Biochimie 1998; 80: 173—195.

19. Comporti M., Signorini C., Buonocore G. et al.Iron release, oxidative stress and erythrocyte ageing. Free Radic. Biol. Med. 2002; 32: 568—576.

20. Liese A., Siddiqi M., Siegel J. et al.Augmented TNF- and IL-10 production by primed human monocytes following interaction with oxidatively modified autologous erythrocytes. J. Leukoc. Biol. 2001; 70: 289—296.

21. Richard C., Wilcox B., Loegering D.IgG-coated erythrocytes augment LPS-stimulated TNF-а secretion, TNF-а mRNA levels, and TNF-а mRNA stability in macrophages. Biochem. Biophys. Res. Commun. 2000; 271: 70—74.

22. Torres F., SpiessВ., Pittman R. et al.Experimental analysis of critical oxygen delivery. Am. J. Physiol. Heart Circ. Physiol. 2005; 3: H1071—H1079.

23. Kendall R.Erythropoietin. Clin. Lab. Haematol. 2001; 23: 71—80.


Review

For citations:


Barkova E.N., Kuznetsov V.V., Zhdanova Ye.V., Balabanova L.F., Sivkov O.G., Nazarenko Ye.V. Mechanisms of Impaired Erythropoiesis in Sepsis . General Reanimatology. 2008;4(1):55. (In Russ.) https://doi.org/10.15360/1813-9779-2008-1-55

Views: 1993


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)