Preview

Общая реаниматология

Расширенный поиск

Нарушения метаболизма НАД+ в нейрональной дисфункции при критических состояниях

https://doi.org/10.15360/1813-9779-2008-1-80

Полный текст:

Аннотация

Анализируются современные представления о патогенезе развития нейрональной дисфункции при критических состояниях с позиции нарушений клеточного метаболизма НАД+, активности НАД+-утилизирующих ферментов, в том числе АДФ-рибозилциклазы/€В38, возможности создания новых нейропротективных стратегий. Ключевые слова: нейрональная дисфункция, АДФ-рибозилциклаза /CD38, НАД+, критическое состояние.

Список литературы

1. Ярилин А. А.

2. Соринсон С. Н.Сепсис. Этиология, патогенез, клиника, диагностика, терапия. Нижн. Новгород: НГМА; 2000.

3. Маркова Т. П., Чувиров Г. Н.Лихорадка как симптом. Рус. мед. журн. 2003; 11 (22): 122

4. Бокерия Л. А., Бузиашвили Ю. И., Амбатьева С. Г. и др.Роль цито-хемокинов в развитии когнитивной дисфункции у больных, оперированных в условиях искусственного кровообращнеия. Бюл. НЦССХ им. А. Н. Бакулева РАМН 2004; 5 (9Ж): 174—181.

5. Гаин Ю. М., Леонович С. И., Завада Н. В. и др.Иммунный статус при перитоните и пути его патогенетической коррекции. Минск: ООО Юнипресс; 2001.

6. Cargill R. S., Thibault L. E.Acute alterations in [Ca2+]I in NG108-15 cells subjected to high strain rate deformation and chemical hypoxia: an in nitro model for neural trauma. J. Neurotrauma 1996; 13: 395—407.

7. Dirnagl U., Iadecola C., Moskowitz M. A.Pathobiology of ischaemic stroke: An integrated view. Trends Neurosci. 1999; 22: 391—39

8. Mattson M. P., Keller J. N., Begley J. G.Evidence for synaptic apoptosis. Exp. Neurol. 1998; 153 (1): 35—4

9. Meloni B. P., Majda B. T., Knuckey N. W. et al.Evaluation of preconditioning treatments to protect near-pure cortical neuronal cultures from in vitro ischemia induced acute and delayed neuronal death. Brain Res. 2002; 928: 69—75.

10. Fox G. B., Fan L., Levasseur R. A., Faden A. I.Sustained sensory/motor and cognitive deficits with neuronal apoptosis following controlled cortical impact brain injury in the mouse. J. Neurotrauma 1998; 15: 599—614.

11. Hattori K. P., Hurn D., Crain B. J.Cognitive deficits after focal cerebral ischemia in mice. Stroke 2000; 31: 1939—1944.

12. Flint J.The genetic basis of cognition. Brain 1999; 122: 2015—2031.

13. Berthelier V., Tixier J. -M., Muller-Steffner H. 6t al.Human CD38 is an authentic NAD(P)+glycohydrolase. Biochem. J. 1998; 330: 1383—1390.

14. Ceni C., Muller-Steffner H., Lund F. et al.Evidence for a intracellular ADP-ribosyl cyclase/NAD glycohydrolase in brain from CD38-defi-cient mice. J. Biol. Chem. 2003; 278 (42): 40670—40678.

15. De Flora A., Franco L., Guida L. et al.Ectocellular CD38-catalyzed synthesis and intracellular Ca2+— mobilizing activity of cyclic ADP-ribose. Cell Biochem. Biophys. 1998; 28 (1): 45—62.

16. Guida L., Bruzzone S., Sturla L. et al.Equilibrative and concentrative nucleoside transporters mediate influx of extracellular cyclic ADP-ribose into 3T3 murine fibroblasts. J. Biol. Chem. 2002; 277 (49): 47097—47105.

17. Hashii M., Munabe Y., Higashida H.cADP-ribose potentiates cytosolic Ca2+elevation and Ca2+entry via L-type voltage-activated Ca2+channels in NG108-15 neuronal cells. Biochem. J. 2000; 345: 207—215.

18. Higashida H., Hashii M., Yokoyama S. et al.Cyclic ADP-ribose as a second messenger revisited from a new aspect of signal transduction from receptors to ADP-ribosyl cyclase. Phramacol. Therapeutic. 2001; 90: 283—296.

19. Bergmann F., U. Keller B.Impact of mitochondrila inhibition on excitability and cytosolic Ca2+levels in brainstem motoneurons from mouse. J. Physiol. 2003; 555: 45—59.

20. Alano C. C., Ying W., Swanson R. A.Poly(ADP-ribose) polymerase-1-mediated cell death in astrocytes requires NAD+depletion and mito-chondrial permeability transition. J. Biol. Chem. 2004; 279 (18): 18895—18902.

21. Di Lisa F., Bernardi P.Mitochondrial function as a determinant of recovery or death in cell response to injury. Mol. Cell. Biochem. 1998; 184: 379—391.

22. Weeber E. J., Levy M., Sampson M. J. et al.The role of mitochondrial porins and the permeability transition pore in learning and synaptic plasticity. J. Biol. Chem. 2002; 277 (21): 18891—18897.

23. Lambert C., Landau A. M., DesbaratsJ.Fas-beyond death: a regenerative role for Fas in the nervous system. Apoptosis 2003; 8: 551—562.

24. LyJ. D., Grubb D. R., Lawen A.The mitochondrial membrane potential in apoptosis; an update. Apoptosis 2003; 8: 115—128.

25. Friedlender R. M.Apoptosis and caspases in neurodegenerative diseases. N. Engl. J. Med. 2003; 348: 1365—1375.

26. Ran Z-H., Rayet B., Rommelaere J.Parvovirus H1-induced cell death: influence of intracellular NAD consumption on the regulation of necrosis and apoptosis. Virus Res. 1999; 65: 161—174.

27. Aksoy P., White T., Thompson M.Regulation of intracellular levels of NAD: a novel role for CD38. Biochem. Biophys. Res. Comm. 2006; doi (10): 1016.

28. Berger F., Lau C., Dahlmann M.Subcellular compartmentation and different catalytic properties of three human nicotinamide mononu-cleotide adenylyltransferase isoforms. J. Biol. Chem. 2005; 280 (43): 36334—36341.

29. Jorcke D., Ziegler M., Herrero-Yraola A. 6t al.Enzymic, cysteine-specific ADP-ribosylation in bovine liver mitochondria. Biochem. J. 1998; 332: 189—193.

30. Virag L., Szabo C.The therapeutic potential of poly(ADP-ribose) poly-merase inhibitors. Pharmacol. Rev. 2002; 54 (3): 375—4

31. Bruzzone S., Verderio C., Schenk U. et al.Glutamate-mediated overex-pression of CD38 in astrocytes cultured with neurons. J. Neurochem. 2004; 89: 264.

32. Hatton G. L.Glial-neuronal interactions in the mammalian brain. Advan. Physiol. Edu. 2002; 26: 225—237.

33. Magistretti P. J.Neuron-glia metabolic coupling and plasticity. J. Exp. Biol. 2006; 209: 2304—2311.

34. Ceni C., Pochon N., Villaz M. et al.The CD38-independent ADP-ribosyl cyclase from mouse brain synaptosomes: a comparative study of neonate and adult brain. Biochem. J. 2006; 395: 417—426.

35. Mizuguchi M., Otsuka N., Sato M. et al.Neuronal localization of CD38 antigen in the human brain. Brain Res. 1995; 697: 235—240.

36. Zocchi E., Franco L., Guida L. et al.NAD+-dependent internalization of the transmembrane glycoprotein CD38 in human Namalwa B cells. FEBS Lett. 1996; 396: 327-332.

37. Zocchi E., Usai C., Guida L. e al.Ligand-induced internalization of CD38 results in intracellular Ca2+mobilization: role of NAD+transport across cell membranes. FASEB J. 1999; 13: 273—283.

38. Tohgo A., Takasawa S., Noguchi N. et al.Essential cysteine residues for cyclic ADP-ribose synthesis and hydrolysis by CD J. Biol. Chem. 1994; 269: 28555—28557.

39. Higashida H., Robbins J., Egorova A. et al.Nicotinamide-adenine dinu-cleotide regulates muscarinic receptor-coupled K+ (M) channels in rodent NG108-15 cells. J. Physiol. 1995; 482 (2): 317—323.

40. Meyer D. A., Carta M., Partridge L. D. et al.Neurosteroids enhance spontaneous glutamate release in hippocampal neurons: possible role of metabotropic 1 -like receptors. J. Biol. Chem. 10. 1074; jbc. M202592200.

41. Dogan S., Deshpande D. A., Kannan M. S. et al.Changes in CD38 expression and ADP-ribosyl cyclase activity in rat myometrium during pregnancy: influence of sex steroid hormones. Biol. Reprod. 2004; 71: 97—103.

42. Liao S. L., Chen W. Y., Chen C. J.Estrogen attenuates tumor necrosis factor-alpha expression to provide ischemic neuroprotection in female rats. Neurosci. Lett. 2002; 330: 159—162.

43. Kii N., Adachi N., Liu K. et al.Acute effects of 17beta-estradiol on oxida-tive stress in ischemic rat striatum. J. Neurosurg. Anesthesiol. 2005; 17: 27—32.

44. Pawlikowska L., Cottrell S. E., Harms M. B. et al.Extracellular synthesis of cADP-ribose from nicotinamide-adenine dinucleotide by rat cortical astrocytes in culture. J. Neurosci. 1996; 16(17): 5372—5381.

45. Hotta T., Asai K., Fujita T. et al.Membrane-bound form of ADP-ribosyl cyclase in rat cortical astrocytes in culture. J. Neurochem. 2000; 74 669—675.

46. Wall K., Klis M., Kornett A. et al.Inhibition of the intrinsic NAD+ gly-cohydrolase activity of CD38 by carbocyclic NAD analogues. Biochem. J. 1998; 335: 631—636.

47. Verderio C., Matteoli M.ATP mediates calcium signaling between astro-cytes and microglial cells: modulation by IFN-gamma. J. Immunol. 2001; 166: 6383—6391.

48. Wilson H. L., Dipp M., Thomas J. T. et al.ADP-ribosyl cyclase and cyclic ADP-ribose hydrolase act as redox sensors. J. Biol. Chem. 2001; 276 (14): 1180—1188.

49. Sun L. A., Adebanjo O. A., Koval A. et al.Novel mechanism for coupling cellular intermediary metabolism to cytosolic Ca2+signaling via CD38/ADP-ribosyl cyclase a putative intracellular NAD+ sensor. FASEB J. 2002; 16: 302—314.

50. Ziegler M., Jorcke D., Schweiger M.Identification of bovine liver mito-chondrial NAD+-glycohydrolase as ADP-ribosyl cyclase. Biochem. J. 1997; 326: 401—405.

51. MillsJ. C., Stone N. L., Pittman R. N.Extranuclear apoptosis: the role of the cytoplasm in the execution phase. J. Cell. Biol. 1999; 146 (4): 703—708.

52. Ying W., Garnier P., A. Swanson R.NAD+ as a metabolic link between DNA damage and cell death. J. Neurosci. Res. 2005; 79: 216—223.

53. Vlassenko A. G., Rundle M. M., Raichle M. E. et al.Regulation of blood flow in activated human brain by cytosolic NADH/NAD+ratio. PNAS 2006; 103: 1964—1969.

54. YauJ. L. W., Noble J., Hibberd C. et al.Chronic treatment with the anti-depressant amitriptyline prevents impairments in water maze learning in aging rats. J. neurosci. 2002; 22 (4): 1436—1442.

55. Shuto S., Matsuda A.Chemistry of cyclic ADP-ribose and its analogs. Curr. Med. Chem. 2004; 11 (7): 827—845.

56. Yang J., Adams J. D. Jr.Structure activity relationships for nicotinamide for the treatment of stroke. Lett. Drug Design Discovery 2004; 1: 58—65.

57. Stoffel-WagnerB.Neurosteroid metabolism in the human brain. Eur. J. Endocrinol. 2001; 145: 669—679.

58. Willets J. M.Neurotoxicity of nicotinamide derivatives: their role in the ethiology of Parkinson’s disease. Biochem. Soc. Trans. 1993; 3: 299S.

59. Salmina A. B., Olovyannikova R. Ya., Noda M., Higashida H.NAD+ metabolism and ADP-ribosyl cyclase as targets for central nervous system therapy. Current Medicinal Chemistry 2006; 6: 193—210.


Для цитирования:


Салмина А.Б., Фурсов А.А., Михуткина С.В., Шахмаева С.В., Манторова Н.С. Нарушения метаболизма НАД+ в нейрональной дисфункции при критических состояниях . Общая реаниматология. 2008;4(1):80. https://doi.org/10.15360/1813-9779-2008-1-80

For citation:


Salmina A.V., Fursov A.A., Mikhutkina S.V., Shakhmayeva S.V., Mantorova N.S. Impaired NAD+ Metabolism in Neuronal Dysfunction in Critical Conditions . General Reanimatology. 2008;4(1):80. (In Russ.) https://doi.org/10.15360/1813-9779-2008-1-80

Просмотров: 276


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)