Preview

General Reanimatology

Advanced search

SAFETY-MODE RESPIRATORY SUPPORT IN NOSOCOMIAL PNEUMONIA

https://doi.org/10.15360/1813-9779-2015-2-6-17

Abstract

Diagnostic criteria for and approaches to differentiated treatment for acute respiratory distress syndrome (ARDS) in nosocomial pneumonia (NP) have been elaborated, but approaches to preventing this syndrome in the presence of risk factors have not been investigated. Safety-mode mechanical ventilation (MV) (protective MV) is the most probable way of preventing ARDS in NP. Objective: to evaluate the efficiency of MV with safety parameters in preventing ARDS in NP in patients with surgical abdominal infection. Subjects and methods. This retrospective unicentric study was conducted at the clinical bases of the V. A. Negovsky Research Institute of General Reanimatology in 2013—2014. During a retrospective analysis, the patients were divided into two groups: 1) safe MV — after NP was diagnosed, the patients underwent safetymode MV (tidal volume (TV) 6—8 ml/kg); 2) standard MV — after NP was diagnosed, the patients were on MV with traditional parameters (TV 8—10 ml/kg). The incidence of ARDS in the patient groups was taken as a main criterion for the efficiency of safetymode respiratory support. The duration of MV, the length of stay in an intensive care unit, and 30day mortality rates were estimated as secondary criteria for the efficiency of safety-mode respiratory support. The findings were statistically analyzed using a Statistica 7.0 package. The data were expressed as the median (± 25—75 percentiles interquartile range (IQR)). The difference at p<0.05 was considered signif icant. >Results. Comparison of oxygenation index (OI) and extravascular lung water index (ELWI) showed that there were natural significant differences between the safe MV and standard MV groups in these indicators, beginning from day 2 of the investigation. The standard MV group displayed a significant decrease in OI and an increase in ELWI at 7 days versus at day 1 of the investigation. In the safe MV group, TV was naturally lower than that in the standard MV group on days 1, 3, and 5 of the study. From day 3, the statistical lung compliance was lower in the standard MV group than that in the safe MV group, which was linked to the development of ARDS in the patients in this group. From day 3, the peak airway pressure was higher in the standard MV group than that in the safe MV group. From this time, the plateau airway pressure was higher in the standard MV group than that in the safe MV group. There were significant differences in the incidence rate of ARDS in NP in the patient groups: ARDS developed in 6 (15.0%) and 20 (67.1%) NP patients who underwent safe and standard MV, respectively (p=0.0001, Fisher's exact test). The NP patients who used MV with safety parameters were recorded lower lengths of MV (14.8±6.2 days) and stay in an intensive care unit (19.2±6.0 days) than those who had standard MV (20.0±6.3 and 23.9±7.7 days) (Fig. 9). There were significant differences in mortality rates between the patient groups in the NP patients on safe MV whose mortality was 27.5% (n=11); this in the NP patients on standard MV was 46.7% (n=14) (p=0.0046, Fisher's exact test). Conclusion. MV with safety parameters allows for preventing ARDS in NP in patients with surgical abdominal infection, which improves treatment outcomes.

About the Authors

V. V. Moroz
V.A. Negovsky Research Institute of General Reanimatology, Moscow, Russia 25, Petrovka, Build. 2, Moscow 107031
Russian Federation


A. N. Kuzovlev
V.A. Negovsky Research Institute of General Reanimatology, Moscow, Russia 25, Petrovka, Build. 2, Moscow 107031 N. N. Burdenko Main Military Clinical Hospital, , Moscow, Russia 3, Hospitalnaia, Moscow 105229
Russian Federation


A. M. Golubev
V.A. Negovsky Research Institute of General Reanimatology, Moscow, Russia 25, Petrovka, Build. 2, Moscow 107031
Russian Federation


V. V. Stets
N. N. Burdenko Main Military Clinical Hospital, , Moscow, Russia 3, Hospitalnaia, Moscow 105229
Russian Federation


S. G. Polovnikov
N. N. Burdenko Main Military Clinical Hospital, , Moscow, Russia 3, Hospitalnaia, Moscow 105229
Russian Federation


References

1. Moroz V.V., Ryabov G.A., Golubev A.M., Marchenkov Yu.V., Vlasenko A.V., Karpun N.A., Yakovlev V.N., Alekseyev V.G., Bobrinskaya I.G., Kuzovlev A.N., Smelaya T.V. Ostryi respiratornyi distress-sindrom. [Acute respiratory distress syndrome]. Moscow: NIIOR; 2013: 80. [In Russ.]

2. Yakovlev A.Yu., Gushchina N.N, Niyazmatov A.A., Zaitsev R.M., Golubtsova E.Yu., Ryabikova M.A. Rannyaya otsenka effektivnosti antibakterialnoi terapii nozokomialnoi pnevmonii putem kolichestvennogo opredeleniya lipopolisakharida. Obshchaya Reanimatologiya. [Early evaluation of the efficiency of antibiotic ther apy for nosocomial pneumonia by quantifying lipopolysaccharide. General Reanimatology]. 2013; 9 (6): 45—52. http://dx.doi. org/10.15360/1813-9779-2013-6-45. [In Russ.]

3. Kuzovlev A.N., Moroz V.V., Golubev A.M., Polovnikov S.G. Ingalyatsionnyi tobramitsin v lechenii IVL-assotsiirovannoi pnevmonii. [Inhaled tobramycin in the treatment of ventilatorassociated pneumonia]. Klinicheskaya Farmakologiya i Terapiya. 2014; 23 (4): 52—58. [In Russ.]

4. Shabanov A.K., Khubutiya M.Sh., Bulava G.V., Beloborodova N.B., Kuzovlev A.N., Grebenchikov O.A., Kosolapov D.A., Shpitonkov M.I. Dinamika urovnya prokaltsetonina pri razvitii nozokomialnoi pnevmonii u postradavshikh s tyazheloi sochetannoi travmoi. Obshchaya Reanimatologiya. [Time course of changes in the level of procalcitonin in the development of nosocomial pneumonia in victims with severe concomitant injury in an intensive care unit. General Reanimatology]. 2013; 9(5): 11—17. http://dx.doi.org/10.15360/1813-9779-2013-5-11. [In Russ.]

5. Shabanov A.K., Bulava G.V., Androsova M.V., Kuzovlev A.N., Kislukhina E.V., Khubutiya M.Sh. Rol pannei immunozamestitelnoi terapii v snizhenii chastoty razvitiya nozokomialnoi pnevmonii u postradavshikh s tyazheloi sochetannoi travmoi. Obshchaya Reanimatologiya. [Role of early immune replacement therapy in reduc ing the rate of nosocomial pneumonia in severe polytravma. General Reanimatology]. 2014; 10 (6): 15—23. http://dx.doi.org/10.15360/ 1813-9779-2014-6-15-23. [In Russ.]

6. Kuzovlev A.N., Moroz V.V., Golubev A.M., Polovnikov S.G. Ingalyatsionnye antibiotiki v lechenii tyazheloi nozokomialnoi pnevmonii. Obshchaya Reanimatologiya. [Inhaled antibiotics in the treatment of severe nosocomial pneumonia. General Reanimatology]. 2013; 9 (6): 61—70. http://dx.doi.org/10.15360/1813-9779-2013-6-61. [In Russ.]

7. Sabirov D.M., MavlyanKhodzhaev R.Sh., Akalaev R.N., Atakhanov Sh.E., Rosstalnaya A.L., Khaidarova S.E., Parpibaev F.O., Sultanov Kh.D. IVL- indutsirovannye povrezhdeniya legkikh (eksperimentalnoe issledovanie). Obshchaya Reanimatologiya. [Ventilator-induced lung injuries (an experimental study). General Reanimatology]. 2014; 10 (6): 24—31. http://dx.doi.org/10.15360/1813-9779-2014-6-24-31. [In Russ.]

8. Moroz V.V., Golubev A.M., Kuzovlev A.N., Pisarev V.M., Polovnikov S.G., Shabanov A.K., Golubev M.A. Surfaktantnyi protein A (SPA) – prognostichesky molekulyarnyi biomarker pri ostrom respiratornom distress-sindrome. Obshchaya Reanimatologiya. [Surfactant protein a (SPA) is a prognostic molecular biomarker in acute respiratory distress syndrome. General Reanimatology]. 2013; 9 (3): 5—13. http://dx.doi.org/10.15360/1813-9779-2013-3-5. [In Russ.]

9. Moroz V.V., Golubev A.M., Kuzovlev A.N., Pisarev V.M., Shabanov A.K., Golubev M.A. Surfaktantnyi protein D – biomarker ostrogo respiratornogo distress-sindroma. Obshchaya Reanimatologiya. [Surfactant protein D is a biomarker of acute respiratory distress syndrome. General Reanimatology]. 2013; 9 (4): 11—17. http://dx.doi.org/10.15360/1813-9779-2013-4-11. [In Russ.]

10. Chuchalin A.G. (red.). Nozokomialnaya pnevmoniya u vzroslykh. Natsionalnye rekomendatsii. [Nosocomial pneumonia in adults. National guidelines]. Moscow: Rossiiskoe Respiratornoe Obshchestvo; 2009: 43. [In Russ.]

11. Lionetti V., Recchia F., Ranieri V. Overview of ventilator-induced lung injury mechanisms. Curr. Opin. Crit. Care. 2005; 11 (1): 82—86.http://dx.doi.org/10.1097/00075198-200502000-00013. PMID: 15659950

12. Moriondo A., Marcozzi C., Bianchin F., Reguzzoni M., Severgnini P., Protasoni M., Raspanti M., Passi A., Pelosi P., Negrini D. Impact of mechanical ventilation and fluid load on pulmonary glycosaminoglycans. Respir. Physiol. Neurobiol. 2012; 181 (3): 308—320. http://dx.doi.org/10.1016/j.resp.2012.03.013. PMID: 22484819

13. Kobr J., Fremuth J., Pizingerová K., Fikrlová S., Jehlicka P., Honomichl P., Sasek L., Racek J., Topolcan O. Total body response to mechanical ventilation of healthy lungs: an experimental study in piglets. Physiol. Res. 2010; 59 (4): 545—552. PMID: 19929141

14. Wilson M., Patel B., Takata M. Ventilation with ‘clinicallyrelevant’ high tidal volumes does not promote stretch-induced injury in the lungs of healthy mice. Crit. Care Med. 2012; 40 (10): 2850—2857. PMID: 22890257

15. Brégeon F., Roch A., Delpierre S., Ghigo E., AutilloTouati A., Kajikawa O., Martin T., Pugin J., Portugal H., Auffray J., Jammes Y. Conventional mechanical ventilation of healthy lungs induced pro-inflammatory cytokine gene transcription. Respir. Physiol. Neurobiol. 2002; 132 (2): 191—203. PMID: 12161332

16. Wolthuis E., Choi G., Dessing M., Bresser P., Lutter R., Dzoljic M., van der Poll T., Vroom M., Hollmann M., Schultz M. Mechanical ventilation with lower tidal volumes and positive endexpiratory pressure prevents pulmonary inflammation in patients without preexisting lung injury. Anesthesiology. 2008; 108 (1): 46—54. http://dx.doi.org/10.1097/01.anes.0000296068.80921.10. PMID: 18156881

17. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N. Engl. J. Med. 2000; 342 (18): 1301—1308. PMID: 10793162

18. Esteban A., FrutosVivar F., Muriel A., Ferguson N., Peñuelas O., Abraira V., Raymondos K., Rios F., Nin N., Apezteguía C., Violi D., Thille A., Brochard L., González M., Villagomez A., Hurtado J., Davies A., Du B., Maggiore S., Pelosi P., Soto L., Tomicic V., D’Empaire G., Matamis D., Abroug F., Moreno R., Soares M., Arabi Y., Sandi F., Jibaja M., Amin P., Koh Y., Kuiper M., Bülow H., Zeggwagh A., Anzueto A. Evolution of mor tality over time in patients receiving mechanical ventilation. Am. J. Respir. Crit. Care Med. 2013; 188 (2): 220—230. http://dx.doi.org/10. 1164/rccm.201212-2169OC. PMID: 23631814

19. Zupancich E., Paparella D., Turani F., Munch C., Rossi A., Massaccesi S., Ranieri V. Mechanical ventilation affects inflammatory mediators in patients undergoing cardiopulmonary bypass for cardiac surgery: a randomized clinical trial. J. Thorac. Cardiovasc. Surg. 2005; 130 (2): 378—383. http://dx.doi.org/10.1016/j.jtcvs.2004.11.061. PMID: 16077402

20. Wrigge H., Uhlig U., Zinserling J., BehrendsCallsen E., Ottersbach G., Fischer M., Uhlig S., Putensen C. The effects of different ventilatory set tings on pulmonary and systemic inflammatory responses during major surgery. Anesth. Analg. 2004; 98 (3): 775—781. http://dx.doi.org/10.1213/01.ANE.0000100663.11852.BF. PMID: 14980936

21. Koner O., Celebi S., Balci H., Cetin G., Karaoglu K., Cakar N. Effects of protective and conventional mechanical ventilation on pulmonary function and systemic cytokine release after cardiopulmonary bypass. Intensive Care Med. 2004; 30 (4): 620—626. http://dx.doi.org/10.1007/s0013400321045. PMID: 14722635

22. Weingarten T., Whalen F., Warner D., Gajic O., Schears G., Snyder M., Schroeder D., Sprung J. Comparison of two ventilatory strategies in elder ly patients undergoing major abdominal surgery. Br. J. Anaesth. 2010; 104(1): 16—22. http://dx.doi.org/10.1093/bja/aep319. PMID: 19933173

23. Severgnini P., Selmo G., Lanza C., Chiesa A., Frigerio A., Bacuzzi A., Dionigi G., Novario R., Gregoretti C., de Abreu M., Schultz M., Jaber S., Futier E., Chiaranda M., Pelosi P. Protective mechanical ventilation dur ing general anesthesia for open abdominal surgery improves postopera tive pulmonary function. Anesthesiology. 2013; 118 (6): 1307—1321. http://dx.doi.org/10.1097/ALN.0b013e31829102de. PMID: 23542800

24. Futier E., Constantin J., PaugamBurtz C., Pascal J., Eurin M., Neuschwander A., Marret E., Beaussier M., Gutton C., Lefrant J., Allaouchiche B., Verzilli D., Leone M., De Jong A., Bazin J., Pereira B., Jaber S.; IMPROVE Study Group. A trial of intraoperative low-tidal-vol-umeventilation in abdominal surgery. N. Engl. J. Med.2013; 369 (5): 428—437. http://dx.doi.org/10.1056/NEJMoa1301082. PMID: 23902482

25. Serpa Neto A., Simonis F., Barbas C., Biehl M., Determann R., Elmer J., Friedman G., Gajic O., Goldstein J., Horn J., Juffermans N., Linko R., de Oliveira R., Sundar S., Talmor D., Wolthuis E., de Abreu M., Pelosi P., Schultz M. Association between tidal volume size, duration of ventilation, and sedation needs in patients without acute respiratory distress syndrome: an individual patient data metaanalysis. Intensive Care Med. 2014; 40 (7): 950—957. http://dx.doi.org/10. 1007/s00134-014-3318-4. PMID: 24811940

26. Lee P., Helsmoortel C., Cohn S., Fink M. Are low tidal volumes safe? Chest. 1990; 97 (2): 430—434. PMID: 2288551

27. Pinheiro de Oliveira R., Hetzel M., dos Anjos Silva M., Dallegrave D., Friedman G. Mechanical ventilation with high tidal volume induces inflammation in patients without lung disease. Crit. Care. 2010; 14 (1): R1. http://dx.doi.org/10.1186/cc8919. PMID: 20236550

28. Determann R., Royakkers A., Wolthuis E., Vlaar A., Choi G., Paulus F., Hofstra J., de Graaff M., Korevaar J., Schultz M. Ventilation with lower tidal volumes as compared with conventional tidal volumes for patients without acute lung injury: a preventive randomized controlled trial. Respir. Physiol. Neurobiol. 2002; 132 (2): 191—203. http://dx.doi.org/10.1186/cc8230. PMID: 20055989

29. Yilmaz M., Keegan M., Iscimen R., Afessa B., Buck C., Hubmayr R., Gajic O. Toward the prevention of acute lung injury: protocol-guided limitation of large tidal volume ventilation and inappropriate transfusion. Crit. Care Med. 2007; 35 (7): 1660—1666. http://dx.doi.org/10.1097/01.CCM.0000269037.66955.F0. PMID: 17507824

30. Terragni P., Del Sorbo L., Mascia L., Urbino R., Martin E., Birocco A., Faggiano C., Quintel M., Gattinoni L., Ranieri V. Tidal volume lower than 6 ml/kg enhances lung protection: role of extracorporeal carbon dioxide removal. Anesthesiology. 2009; 111 (4): 826—835. http://dx.doi.org/10.1097/ALN.0b013e3181b764d2. PMID: 19741487

31. Nahum A., Hoyt J., Schmitz L., Moody J., Shapiro R., Marini J. Effect of mechanical ventilation strategy on dissemination of intratracheally instilled Escherichia coli in dogs. Crit. Care Med. 1997; 25 (10): 1733—1743. http://dx.doi.org/10.1097/00003246-199710000-00026. PMID: 9377891

32. Villar J., Cabrera N., Casula M., Flores C., Valladares F., Muros M., Blanch L., Slutsky A., Kacmarek R. Mechanical ventilation modulates Toll like receptor signaling pathway in a sepsis-induced lung injury model. Intensive Care Med. 2010; 36 (6): 1049—1057. http://dx.doi.org/10.1007/s00134-010-1799-3. PMID: 20397011

33. Savel R., Yao E., Gropper M. Protective effects of low tidal volume ventilation in a rabbit model of Pseudomonas aeruginosa-induced acute lung injury. Crit. Care Med. 2001; 29 (2): 392—398. http://dx.doi.org/10.1097/00003246-200102000-00032. PMID: 11246322

34. Kurahashi K., Ota S., Nakamura K., Nagashima Y., Yazawa T., Satoh M., Fujita A., Kamiya R., Fujita E., Baba Y., Uchida K., Morimura N., Andoh

35. T., Yamada Y. Effect of lungprotective ventilation on severe Pseudomonas aeruginosa pneumonia and sepsis in rats. Am. J. Physiol. Lung Cell Mol. Physiol. 2004; 287 (2): L402—L410. http://dx.doi.org/10.1152/ajplung.00435.2003. PMID: 15107296

36. Villar J., HerreraAbreu M., Valladares F., Muros M., PérezMéndez L., Flores C., Kacmarek R. Experimental ventilator-induced lung injury: exacerbation by positive end-expiratory pressure. Anesthesiology. 2009; 110(6): 1341—1347. http://dx.doi.org/10.1097/ALN.0b013e31819fcba9. PMID: 19417614

37. Smeding L., Kuiper J., Plötz F., Kneyber M., Groeneveld A. Aggravation of myocardial dysfunction by injurious mechanical ventilation in LPS- induced pneumonia in rats. Respir. Res. 2013; 14: 92. http://dx.doi. org/10.1186/1465-9921-14-92. PMID: 24047433

38.


Review

For citations:


Moroz V.V., Kuzovlev A.N., Golubev A.M., Stets V.V., Polovnikov S.G. SAFETY-MODE RESPIRATORY SUPPORT IN NOSOCOMIAL PNEUMONIA. General Reanimatology. 2015;11(2):6-17. https://doi.org/10.15360/1813-9779-2015-2-6-17

Views: 5598


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)