Preview

General Reanimatology

Advanced search

Neuro-Glio-Vascular Complexes of the Brain After Acute Ischemia

https://doi.org/10.15360/1813-9779-2017-6-6-17

Abstract

The purpose of the study is to compare the structural and functional state of neuro-glio-vascular microstructural complexes of the somatosensory cortex (SSC), CA1 of the hippocampus and amygdala of the brain of white rats under normal conditions and after acute ischemia caused by a 20-minute occlusion of common carotid arteries.

Materials and methods. In this experiment, neurons, astrocytes, endotheliocytes, pericytes, basal membrane of the microvessels were studied in the normal (n=5) and the reperfusion period (1, 3, 7, 14, 21 and 30 days, n=30) using electron and fluorescence microscopy (DAPI staining). The morphometric analysis was carried out using the ImageJ 1.46 software.

Results. During the recovery period after ischemia was noted reactive (edema-swelling, tinctorial properties of cells) and compensatory-restoration (hyperplasia, hypertrophy, proliferation, increased transcytosis) changes in neuro-glia-vascular complexes. After ischemia, the number of neurons decreased (by 8.7%—55,3%), and the glial cell count 2—3 fold increased. Increasing neuroglial index (NGI) was accompanied by: 1) the emergence of microvessels with numerous branched processes of pericytes, 2) the complication of the spatial organization of basal membranes, and 3) the structural features of activation of transcytosis processes (large number of caveolae, smooth and clathrin vesicles, large vesicles) in pericytes and endothelial cells.

Conclusion.These findings indicate the compensatory-restoration changes in the components of neuro-gliovascular complexes SSC, CA1 of the hippocampus and amygdala of white rat’s brain after a 20-minute occlusion of the common carotid arteries. The most complete implementation of mechanisms for the protection and repair of damaged neurons occurs in the SSC and amygdala exhibiting high NGI values.

About the Authors

A. S. Stepanov
Omsk State Medical University, Ministry of Health of Russia.
Russian Federation
12 Lenin Str., Omsk 644099.


V. A. Akulinin
Omsk State Medical University, Ministry of Health of Russia.
Russian Federation
12 Lenin Str., Omsk 644099.


A. V. Mysik
Omsk State Medical University, Ministry of Health of Russia.
Russian Federation
12 Lenin Str., Omsk 644099.


S. S. Stepanov
Omsk State Medical University, Ministry of Health of Russia.
Russian Federation
12 Lenin Str., Omsk 644099.


D. B. Avdeev
Omsk State Medical University, Ministry of Health of Russia.
Russian Federation
Omsk State Medical University, Ministry of Health of Russia.


References

1. Vasilyev Yu.G., Chuchkov V.M. Neuro-glyo-vascular relations in the central nervous system (morphological study with elements of morphometric and mathematical analysis). Izhevsk: ANK; 2003: 164. [In Russ.]

2. Kuzin A.V., Vasilyev Yu.G., Chuchkov V.M., Shorokhova T.G. Ensemble interactions in the central nervous system. Izhevsk, Berlin: ANK; 2004: 160. [In Russ.]

3. Wolburg H., Noell S., Mack A., Wolburg-Buchholz K., Fallier-Becker P. Brain endothelial cells and the glio-vascular complex. Cell Tissue Res. 2009; 335 (1): 75-96. DOI: 10.1007/s00441-008-0658-9. PMID: 18633647

4. Nakagawa S., Deli M.A., Nakao S., Honda M., Hayashi K., Nakaoke R., Kataoka Y., Niwa M. Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells. Cell Mol. Neurobiol. 2007; 27 (6): 687-694. DOI: 10.1007/s10571-007-9195-4. PMID: 17823866

5. Ostrova I.V., Avrushchenko M.S. Expression of Brain-Derived Neurotrophic Factor (BDNF) increases the resistance of neurons to death in the postresuscitation period. Obshchaya Reanimatologiya=General Reanimatology. 2015; 11 (3): 45-53. DOI: 10.15360/1813-9779-2015-3-45-53. [In Russ., In Engl.]

6. Avrushchenko M.S., Ostrova I.V. Significance of Basic Fibroblast Growth Factor (BFGF) in the development of postresuscitation changes in population of cerebellar Purkinje cells. Obshchaya Reanimatologiya=General Reanimatology. 2016; 12(1): 8-15. DOI: 10.15360/1813-9779-2016-1-8-15. [In Russ., In Engl.]

7. Nakagawa S., Deli M.A., Kawaguchi H., Shimizudani T., Shimono T., Kittel A., Tanaka K., Niwa M. A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem. Int. 2009; 54 (3-4): 253-263. DOI: 10.1016/j.neuint.2008.12.002. PMID: 19111869

8. Liu S., Agalliu D., Yu C., Fisher M. The role of pericytes in blood-brain barrier function and stroke. Curr. Pharm. Des. 2012; 18 (25): 3653-3662. DOI: 10.2174/138161212802002706. PMID: 22574979

9. Nahirney P.C., Reeson P., Brown C.E. Ultrastructural analysis of blood— brain barrier breakdown in the peri-infarct zone in young adult and aged mice. J. Cereb. Blood Flow Metab. 2016; 36 (2): 413-425. DOI: 10.1177/0271678X15608396. PMID: 26661190

10. Cai W., Liu H., Zhao J., Chen L.Y., Chen J., Lu Z., Hu X. Pericytes in brain injury and repair after ischemic stroke. Transl. Stroke Res. 2017; 8 (2): 107-121. DOI: 10.1007/s12975-016-0504-4. PMID: 27837475

11. Tuma P.L., Hubbard A.L. Transcytosis: crossing cellular barriers. Physiol. Rev. 2003; 83 (2): 871-932. DOI: 10.1152/physrev.00001.2003. PMID: 12843411

12. Shurygin M.G., Shurygina I.A., Dremina N.N., Kanya O.V. Angiogenesis as an adaptive mechanism in ischemia. Byulleten Vostochno-Sibirskogo Nauchnogo Tsentra Sibirskogo Otdeleniya Rossiiskoi Akademii Meditsin-skikh Nauk. 2013; 5: 192-195. [In Russ.]

13. Silvestre J.S., Mallat Z., Tedgui A., Levy B.I. Post-ischaemic neovascularization and inflammation. Cardiovasc. Res. 2008; 78 (2): 242-249. DOI: 10.1093/cvr/cvn027. PMID: 18252762

14. Lossinsky A.S., Shivers R.R. Structural pathways for macromolecular and cellular transport across the blood-brain barrier during inflammatory conditions. Histol. Histopathol. 2004; 19 (2): 535-564. DOI: 10.14670/HH-19.535. PMID: 15024715

15. Semchenko V.V., Stepanov S.S., Bogolepov N.N. Synaptic plasticity of the brain (fundamental and applied aspects). 2nd ed. Moscow: Direkt-Media; 2014: 499. [In Russ.]

16. Hossmann K.A. Cerebral ischemia: models, methods and outcomes. Neuropharmacology. 2008; 55 (3): 257-270. DOI: 10.1016/j.neu-ropharm.2007.12.004. PMID: 18222496

17. Paxinos G., Watson C. The rat brain in stereotaxic corodinates. 5th ed. San Diego (California): Elsevier Academic Press; 2005: 367.

18. Zink D., Sadoni N., Stelzer E. Visualizing chromatin and chromosomes in living cells. Methods. 2003; 29 (1): 42-50. DOI: 10.1016/S1046-2023(02)00289-X. PMID: 12543070

19. Mytsik A.V., Stepanov S.S., Larionov P.M., Akulinin V.A. Actual problems in the study of structural and functional state of neurons in the human cerebral cortex in postischemic period. Zhurnal Anatomii i Gistopatologii. 2012; 1 (1): 37-47. [In Russ.]


Review

For citations:


Stepanov A.S., Akulinin V.A., Mysik A.V., Stepanov S.S., Avdeev D.B. Neuro-Glio-Vascular Complexes of the Brain After Acute Ischemia. General Reanimatology. 2017;13(6):6-17. (In Russ.) https://doi.org/10.15360/1813-9779-2017-6-6-17

Views: 1295


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)