Preview

General Reanimatology

Advanced search

Phospholipids of Synaptic Membranes in the Pathogenesis of Encephalopathy During Hemorrhagic Shock (Review)

https://doi.org/10.15360/1813-9779-2019-2-99-114

Abstract

Correction of brain cell damages caused by massive blood loss is one of the urgent problems of hemorrhagic shock, which ensures the need in clarification of mechanisms of such damages with the prospect of developing strategies to restore the functional activity of neurons. Analysis of the data presented in the review suggests that the dysregulation of phospholipid metabolism underlies both structural damage of synaptic membranes and their functions, including receptor signaling, the disturbances of which lead to encephalopathy in hemorrhagic shock. Correction of synaptic membranes phospholipid composition seems to possess a potential for increasing the effectiveness of treatment of shock-induced brain function disorders.

About the Author

G. F. Leskova
Scientific Research Institute of General Pathology and Pathophysiology
Russian Federation

Galina F. Leskova 

8 Baltiyskaya Str., Moscow 125315

 



References

1. Sieber F.E., Traystman R.J., Martin L.J. Delayed neuronal death after global incomplete ischemia in dogs is accompanied by changes in phospholipase C protein expression. J. Cereb. Blood Flow Metab. 1997; 17 (5): 527–533. DOI: 10.1097/00004647-199705000-00006. PMID: 9183290

2. Kozhura V.L., Solovyeva Zh.V., Novoderzhkina I.S., Nosova N.V. The neurochemical, molecular and ultrastructural mechanisms of the formation of latent postresuscitation encephalopathy. Anesteziologiya i Reanimatologiya. 1996; 5: 52–56. PMID: 9027257. [In Russ.]

3. Billah M.M., Anthes J.C. The regulation and cellular functions of phosphatidylcholine hydrolysis. Biochem. J. 1990; 269 (2): 281–291. DOI: 10.1042/bj2690281. PMID: 2201284

4. Moroz V.V. Postresuscitation disease as a dysregulated pathology. In: Kryzhanovsky G.N. (ed.). Dysregulated pathology. Moscow: Meditsina Publisher; 2002: 233–259. [In Russ.]

5. Bollag W.B., Zhong X., Dodd M.E., Hardy D.M., Zheng X., Allred W.T. Phospholipase d signaling and extracellular signal-regulated kinase-1 and -2 phosphorylation (activation) are required for maximal phorbol ester-induced transglutaminase activity, a marker of keratinocyte differentiation. J. Pharmacol. Exp. Ther. 2005; 312 (3): 1223–1231. DOI: 10.1124/jpet.104.075622. PMID: 15537826

6. Kim H.Y., Huang B.X., Spector A.A. Phosphatidylserine in the brain: metabolism and function. Prog. Lipid Res. 2014; 56: 1–18. DOI: 10.1016/ j.plipres.2014.06.002. PMID: 24992464

7. Min D.S., Park S.K., Exton J.H. Characterization of a rat brain phospholipase D isozyme. J. Biol. Chem. 1998; 273 (12): 7044–7051. DOI: 10.1074/jbc.273.12.7044. PMID: 9507013

8. Waugh M.C. PIPs in neurological diseases. Biochim. Biophys. Acta. 2015; 1851 (8): 1066–1082. DOI: 10.1016/j.bbalip.2015.02.002. PMID: 25680866

9. Llahi S., Fain J.N. Alpha 1-adrenergic receptor-mediated activation of phospholipase D in rat cerebral cortex. J. Biol. Chem. 1992; 267 (6): 3679–3685. PMID: 1310979

10. Klein J. Membrane breakdown in acute and chronic neurodegeneration: focus on choline-containing phospholipids. J. Neural. Transm. (Vienna). 2000: 107 (8–9). 1027–1063. DOI: 10.1007/s007020070051. PMID: 11041281

11. Bazan N.G., Tu B., Rodriguez de Turco E.B. What synaptic lipid signaling tells us about seizure-induced damage and epileptogenesis. Prog. Brain Res. 2002; 135: 175–185. DOI: 10.1016/S0079-6123(02)35017-9. PMID: 12143339

12. Nefedov A.A., Mamchur V.I. Use of citicoline for the correction of ultrastructural changes in the central nervous system induced by experimental allergic encephalomyelitis. Vestnik Problem Biologii i Meditsiny. 2016; 2 (129): 235–240. [In Ukr.]

13. Sun Y.G., Rupprecht V., Zhou L., Dasgupta R., Seibt F., Beierlein M. mGluR1 and mGluR5 synergistically control cholinergic synaptic transmission in the thalamic reticular nucleus. J. Neurosci. 2016; 36 (30): 7886–7896. DOI: 10.1523/JNEUROSCI.0409-16.2016. PMID: 27466334

14. Solovyeva E.Yu., Farrakhova K.I., Karneyev A.N., Chipova D.T. Phospholipids metabolism disorders in acute stroke. Zhurnal Nevrologii i Psikhiatrii Imeni S.S.Korsakova. 2016; 116 (1): 104–112. DOI: 10.17116/jnevro201611611104-112. PMID: 27045147. [In Russ.]

15. McDermontti M., Wakelam M.J., Morris A.J. Phospholipase D. Biochem. Cell Biol. 2004; 82 (1): 225–253. DOI: 10.1139/o03-079. PMID: 15052340

16. Tsyrlin V.A. Bulbar vasomotor center – morphofunctional and neurochemical organization. Arterialnaya Gipertenziya. 2003; 9 (3): 77–81. [In Russ.]

17. Liscovitch M., Chalifa V., Pertile P., Chen C.S., Cantley L.C. Novel function of phosphatidylinositol 4,5-bisphosphate as a cofactor for brain membrane phospholipase D. J. Biol. Chem. 1994; 269 (34): 21403–21406. PMID: 8063770

18. Papadopoulos T., Rhee H.J., Subramanian D., Paraskevopoulou F., Mueller R., Schultz C., Brose N., Rhee J.S., Betz H. Endosomal phosphatidylinositol 3-phosphate promotes gephyrin clustering and GABAergic neurotransmission at inhibitory postsynapses. J. Biol. Chem. 2017; 292 (4): 1160– 1177. DOI: 10.1074/jbc.M116.771592. PMID: 27941024

19. Gasull T., Sarri E., Degregorio-Rocasolano N., Trullas R. NMDA receptor overactivation inhibits phospholipid synthesis by decreasing choline-ethanolamine phosphotransferase activity. J. Neurosci. 2003. 23 (10): 4100– 4107. DOI: 10.1523/JNEUROSCI.23-10-04100.2003. PMID: 12764097

20. Lauwers E., Goodchild R., Verstreken P. Membrane lipids in presynaptic function and disease. Neuron. 2016; 90 (1): 11–25. DOI: 10.1016/j.neuron.2016.02.033. PMID: 27054615

21. Adibhatla R.M., Hatcher J.F., Dempsey R.J. Cytidine-5’-diphosphocholine affects CTP-phosphocholine cytidylyltransferase and lyso-phosphatidylcholine after transient brain ischemia. J. Neurosci. Res. 2004; 767 (3): 390–396. DOI: 10.1002/jnr.20078. PMID: 15079868

22. Leskova G.F. The role of phospholipid synaptic membranes in the mechanisms of regulation of neurotransmission in the medulla oblongata in hemorrhagic shock in cats. Patogenez. 2006; 4 (3): 57–65. [In Russ.]

23. Kozhura V.L. Neurobiological mechanisms of massive blood loss. Anesteziologiya i Reanimatologiya. 2001; 6: 51–53. PMID: 11855064. [In Russ.]

24. Leskova G.F. Changes in the composition of phospholipids in synaptic membranes of the frontal lobes of the cerebral hemispheres of cats at different stages of hemorrhagic shock. Byulleten Eksperimentalnoi Biologii i Meditsiny. 2008; 146 (10): 381–384. [In Russ.]

25. Persard S., Panagia V. Abnormal synthesis of N-methylated phospholipids during calcium paradox of the heart. J. Mol. Cell. Cardiol. 1995; 27 (1): 579–587. DOI: 10.1016/S0022-2828(08)80052-1. PMID: 7760378

26. Borda T.G., Cremaschi G., Sterin-Borda L. Haloperidol-mediated phosphoinositide hydrolysis via direct activation of alpha1-adrenoceptors in frontal cerebral rat cortex. Can. J. Physiol. Pharmacol. 1999; 77 (1): 22– 28. DOI: 10.1139/cjpp-77-1-22. PMID: 10535662

27. Vartanyan A.A., Aprikyan G.V., Vanyushin V.F. Methylation of phospholipids and synaptic capture of mediator amino acids. Izvestiya Akademii Nauk SSSR. Seriya Biologicheskaya. 1990; 5: 786–789. [In Russ.]

28. Kubista H., Kosenburger K., Mahlknecht P., Drobny H., Boehm S. Inhibition of transmitter release from rat sympathetic neurons via presynaptic M1 muscarinic acetylcholine receptors. Br. J. Pharmacol. 2009; 156 (8): 1342–1352. DOI: 10.1111/j.1476-5381.2009.00136.x. PMID: 19309359

29. Belokoneva O.S., Zaitsev S.V. The role of membrane lipids in regulating the function of neuromediator receptors. Biokhimiya. 1993; 58 (11): 1685–1708. PMID: 7903554. [In Russ.]

30. Wang H., Treadway T., Covey D.P., Cheer J.F., Lupica C.R. Cocaine-induced endocannabinoid mobilization in the ventral tegmental area. Cell. Rep. 2015; 12 (12): 1997–2008. DOI: 10.1016/j.celrep.2015.08.041. PMID: 26365195

31. Fisenko V.P. Neurochemical relationships in the action of opioid analgesics on cerebral cortex. Byulleten Eksperimentalnoi Biologii i Meditsiny. 2001; 132 (7): 4–11. PMID: 11687833. [In Russ.]

32. Sodhi P., Hartwick A.T. Muscarinic acetylcholine receptor-mediated stimulation of retinal ganglion cell photoreceptors. Neuropharmacology. 2016; 108: 305–315. DOI: 10.1016/j.neuropharm.2016.04.001. PMID: 27055770

33. Zhu W., Pan Z.Z. Mu-opioid-mediated inhibition of glutamate synaptic transmission in rat central amygdala neurons. Neuroscience. 2005; 133 (1): 97–103. DOI: 10.1016/j.neuroscience.2005.02.004. PMID: 15893634

34. Berridge M.J., Bootman M.D., Lipp P. Calcium – a life and death signal. Nature. 1998; 395 (6703): 645–648. DOI: 10.1038/27094. PMID: 9790183

35. Pourzitaki C.,Tsaousi G., Papazisis G., Kyrgidis A., Zacharis C., Kritis A., Malliou F., Kouvelas D. Fentanyl and naloxone effects on glutamate and GABA release rates from anterior hypothalamus in freely moving rats. Eur. J. Pharmacol. 2018; 834: 169–175. DOI: 10.1016/j.ejphar. 2018.07.029. PMID: 30030987

36. Staudt E., Ramasamy P., Plattner H., Simon M. Differential subcellular distribution of four phospholipase C isoforms and secretion of GPI-PLC activity. Biochim. Biophys. Acta. 2016; 1858 (12): 3157–3168. DOI: 10.1016/j.bbamem.2016.09.022. PMID: 27693913

37. Kozhura V.L., Nosova N.V. Apoptosis as a mechanism of delayed posthypoxic encephalopathy. Byulleten Eksperimentalnoi Biologii i Meditsiny. 2000; Supplement 2: 30–32. [In Russ.]

38. Masgrau R., Servitja J.M., Yong K.W., Pardo R., Sarri E., Nahorski S.R., Picatoste F. Characterization of the metabotropic glutamate receptors mediating phospholipase C activation and calcium release in cerebellar granule cells: calcium-dependence of the phospholipase C response. Eur. J. Neurosci. 2001; 13 (2): 248–256. DOI: 10.1046/j.0953816X.2000.01384.x. PMID: 11168529

39. Aki H.S., Fujita M., Yamashita S., Fujimoto K., Kumagai K., Tsuruta R., Kasaoka S., Aoki T., Nanba M., Murata H., Yuasa M., Maruyama I., Maekawa T. Elevation of jugular venous superoxide anion radical is associated with early inflammation, oxidative stress, and endothelial injury in forebrain ischemia-reperfusion rats. Brain Res. 2009; 1292: 180–190. DOI: 10.1016/j.brainres.2009.07.054. PMID: 19635469

40. Shin J., Gireesh G., Kim S.W., Kim D.S., Lee S., Kim Y.S., Watanabe M., Shin H.S. Phospholipase C beta 4 in the medial septum controls cholinergic theta oscillations and anxiety behaviors. J. Neurosci. 2009; 29 (49): 15375–15385. DOI: 10.1523/JNEUROSCI.3126-09.2009. PMID: 20007462

41. Hwabejire J.O., Jin G., Imam A.M., Duggan M., Sillesen M., Deperalta D., Jepsen C.H., Lu J., Li Y., deMoya M.A., Alam H.B. Pharmacologic modulation of cerebral metabolic derangement and excitotoxicity in a porcine model of traumatic brain injury and hemorrhagic shock. Surgery. 2013; 154 (2): 234–243. DOI: 10.1016/j.surg.2013.04.008. PMID: 23889951

42. Dai J., Fu Y., Zeng Y., Li S., Qin Yin Z. Improved retinal function in RCS rats after suppressing the over-activation of mGluR5. Sci. Rep. 2017; 7 (1): 3546. DOI: 10.1038/s41598-017-03702-z. PMID: 28615682

43. McDaniel M.A., Maier S.F., Einstein G.O. «Brain-specific» nutrients: a memory cure? Nutrition. 2003; 19 (11–12): 957–975. DOI: 10.1016/S0899-9007(03)00024-8. PMID: 14624946

44. Hirabayashi T., Murayama T., Shimiza T. Regulatory mechanism and physiological role of cytosolic phospholipase a2. Biol. Pharm. Bull. 2004; 27 (8): 1168–1173. DOI: 10.1248/bpb.27.1168. PMID: 15305015

45. Kingsley M. Effects of phosphatidylserine supplementation on exercising humans. Sports Med. 2006; 36 (8): 657–669. DOI: 10.2165/00007256200636080-00003. PMID: 16869708

46. Massicotte G. Modification of glutamate receptors by phospholipase A2: its role in adaptive neural plasticity. Cell Mol. Life Sci. 2000; 57 (11): 1542–1550. DOI: 10.1007/PL00000639. PMID: 11092449

47. Wong J.T., Tran K., Pierce G.N., Chan A.C., O K., Choy P.C. Lysophosphatidylcholine stimulates the release of arachidonic acid in human endothelial cells. J. Biol. Chem. 1998; 273 (12): 6830–6836. DOI: 10.1074/jbc.273.12.6830. PMID: 9506985

48. St-Gelas F., Ménard C., Congar P., Trudeau L.E., Massicotte G. Postsynaptic injection of calcium-independent phospholipase A2 inhibitors selectively increases AMPA receptor-mediated synaptic transmission. Hippocampus. 2004; 14 (3): 319–325. DOI: 10.1002/hipo.10176. PMID: 15132431

49. Ozaka H., Ishii K., Arai H., Kume N., Kita T. Lysophosphatidylcholine activates mitogen-activated protein kinases by a tyrosine kinase-dependent pathway in bovine aortic endothelial cells. Atherosclerosis. 1999; 143 (2): 261–266. DOI: 10.1016/S0021-9150(98)00297-4. PMID: 10217354

50. Nishio H., Takeuchi T., Hata F., Yagasaki O. Ca(2+)-independent fusion of synaptic vesicles with phospholipase A2-treated presynaptic membranes in vitro. Biochem. J. 1996; 318 (Pt 3): 981–987. PMID: 8836147

51. Bassa B.V., Roh D.D., Varzirl N.D., Kirschenbaum M.A., Kamanna V.S. Lysophosphatidylcholine activates mesangial cell PKC and MAP kinase by PLCgamma-1 and tyrosine kinase-Ras pathways. Am. J. Physiol. 1999; 277 (3): F328–F337. DOI: 10.1152/ajprenal.1999.277.3.F328. PMID: 10484515

52. Schmidt J.T., Mariconda L., Morillo F., Apraku E. A role for the polarity complex and PI3 kinase in branch formation within retinotectal arbors of zebrafish. Dev. Neurobiol. 2014; 74 (6): 591–601. DOI: 10.1002/ dneu.22152. PMID: 24218155

53. Liu S.Y., Yu C.H., Hays J.A., Panagia V., Dhalla N.S. Modification of heart sarcolemmal phosphoinositide pathway by lysophosphatidylcholine. Biochim. Biophys. Acta. 1997; 1349 (3): 264–274. DOI: 10.1016/S00052760(97)00142-2. PMID: 9434141

54. Albarran L., Lopez J.J., Woodard G.E., Salido G.M., Rosado J.A. Store-operated Ca2+ entry-associated regulatory factor (SARAF) plays an important role in the regulation of arachidonate-regulated Ca2+ (ARC) channels. J. Biol. Chem. 2016; 291 (13): 6982–6988. DOI: 10.1074/jbc.M115.704940. PMID: 26817842

55. Cox D.A., Cohen M.L. Lysophosphatidylcholine stimulates phospholipase D in human coronary endothelial cells: role of PKC. Am. J. Phisiol. 1996; 271 (4 Pt 2): H1706–H1710. DOI: 10.1152/ajpheart.1996.271.4.H1706. PMID: 8897967

56. Hayashi Y., Morinaga S., Zhang J., Satoh Y., Meredith A.L., Nakata T., Wu Z., Kohsaka S., Inoue K., Nakanishi H. BK channels in microglia are required for morphine-induced hyperalgesia. Nat. Commun. 2016; 7: 11697. DOI: 10.1038/ncomms11697. PMID: 27241733

57. Golfman L.S., Haughey N.J., Wong J.T., Jiang J.Y., Lee D., Geiger J.D., Choy P.C. Lysophosphatidylcholine induces arachidonic acid release and calcium overload in cardiac myoblastic H9c2 cells. J. Lipid. Res. 1999; 40 (10): 1818–1826. PMID: 10508201

58. DeCoster M.A., Lambeau G., Lazdunski M., Bazan N.G. Secreted phospholipase A2 potentiates glutamate-induced calcium increase and cell death in primary neuronal cultures. J. Neurosci. Res. 2002; 67 (5): 634– 645. DOI: 10.1002/jnr.10131. PMID: 11891776

59. Taylor A.L., Hewett S.J. Potassium-evoked glutamate release liberates arachidonic acid from cortical neurons. J. Biol. Chem. 1992; 277 (46): 43881–43887. DOI: 10.1074/jbc.M205872200. PMID: 12235140

60. Wenk M.R., De Camilli P. Protein-lipid interactions and phosphoinositide metabolism in membrane traffic: insights from vesicle recycling in nerve terminals. Proc. Natl. Acad. Sci. USA. 2004; 101 (22): 8262–8269. DOI: 10.1073/pnas.0401874101. PMID: 15146067

61. Koizumi S., Rosa P., Willars G.B., Challiss R.A., Taverna E., Francolini M., Bootman M.D., Lipp P., Inoue K., Roder J., Jeromin A. Mechanisms underlying the neuronal calcium sensor-1-evoked enhancement of exocytosis in PC12 cell. J. Biol. Chem. 2002; 277 (33): 30315–30324. DOI: 10.1074/jbc.M201132200. PMID: 12034721

62. Zheng Q., Bobich J.A., Vidugiriene J., McFadden S.C., Thomas F., Roder J., Jeromin A. Neuronal calcium sensor-1facilitates neuronal exocytosis through phosphatidylinositol 4-kinase. J. Neurochim. 2005; 92 (3): 442–451. DOI: 10.1111/j.1471-4159.2004.02897.x PMID: 15659215

63. Ames J.B., Lim S., Ikura M. Molecular structure and target recognition of neuronal calcium sensor proteins. Front. Mol. Neurosci. 2012; 5: 10. DOI: 10.3389/fnmol.2012.00010. PMID: 22363261

64. Elvers M., Stegner D., Hagedorn I., Kleinschnitz C., Braun A., Kuijpers M.E., Boesl M., Chen Q., Heemskerk J.W., Stoll G., Frohman M.A., Nieswandt B. Impaired alpha(IIb)beta(3) integrin activation and shear-dependent thrombus formation in mice lacking phospholipase D1. Sci. Signal. 2010; 3 (103): ra1. DOI: 10.1126/scisignal.2000551. PMID: 20051593

65. Arendt K.L., Royo M., Fernández-Monreal M., Knafo S., Petrok C.N., Martens J.R,, Esteban J.A. PIP3 controls synaptic function by maintaining AMPA receptor clustering at the postsynaptic membrane. Nat. Neurosci. 2010; 13 (1): 36–44. DOI: 10.1038/nn.2462. PMID: 20010819

66. Clayton E.L., Minogue S., Waugh M.G. Mammalian phosphatidylinositol 4-kinases as modulators of membrane trafficking and lipid signaling networks. Prog. Lipid Res. 2013; 52 (3): 294–304. DOI: 10.1016/j.plipres.2013.04.002. PMID: 23608234

67. Baijalieh S.M., Scheller R.H. The biochemistry of neurotransmitter secretion. J. Biol. Chem. 1995; 270 (5): 1971–1974. DOI: 10.1074/jbc.270.5.1971. PMID: 7836421

68. Smith C.U.M. Elements of molecular neurology. 3-rd ed. Wiley & Sons LTD; 2002: 630. ISBN: 0471560383

69. Sasaki J., Kofuji S., Itoh R., Momiyama T., Takayama K., Murakami H., Chida S., Tsuya Y., Takasuga S., Eguchi S., Asanuma K., Horie Y., Miura K., Davies E.M., Mitchell C., Yamazaki M., Hirai H., Takenawa T., Suzuki A., Sasaki T. The PtdIns(3,4)P(2) phosphatase INPP4A is a suppressor of excitotoxic neuronal death. Nature. 2010; 465 (7297): 497–501. DOI: 10.1038/nature09023. PMID: 20463662

70. Unoki T., Matsuda S., Kakegawa W., Van N.T., Kohda K., Suzuki A., Funakoshi Y., Hasegawa H., Yuzaki M., Kanaho Y. NMDA receptor-mediated PIP5K activation to produce PI(4,5)P2 is essential for AMPA receptor endocytosis during LTD. Neuron. 2012; 73 (1): 135–148. DOI: 10.1016/j.neuron.2011.09.034. PMID: 22243752

71. Seebohm G., Neumann S., Theiss C., Novkovic T., Hill E.V., Tavarй J.M., Lang F., Hollmann M., Manahan-Vaughan D., Strutz-Seebohm N. Identification of a novel signaling pathway and its relevance for GluA1 recycling. PLoS One. 2012; 7 (3): e33889. DOI: 10.1371/journal.pone.0033889. PMID: 22470488

72. Hille B., Dickson E.J., Kruse M., Vivas O., Suh B.C. Phosphoinositides regulate ion channels. Biochim. Biophys. Acta. 2015; 1851 (6): 844–856. DOI: 10.1016/j.bbalip.2014.09.010. PMID: 25241941

73. Hamilton P.J., Belovich A.N., Khelashvili G., Saunders C., Erreger K., Javitch J.A., Sitte H.H., Weinstein H., Matthies H.J.G., Galli A. PIP2 regulates psychostimulant behaviors through its interaction with a membrane protein. Nat. Chem. Biol. 2014; 10 (7): 582–589. DOI: 10.1038/nchembio.1545. PMID: 24880859

74. Keum D., Baek C., Kim D.I., Kweon H.J., Suh B.C. Voltage-dependent regulation of CaV2.2 channels by Gq-coupled receptor is facilitated by membrane-localized subunit. J. Gen. Physiol. 2014; 144 (4): 297–309. DOI: 10.1085/jgp.201411245. PMID: 25225550

75. Jeong J.Y., Kweon H.J., Suh B.C. Dual regulation of R-type CaV2.3 channels by M1 muscarinic receptors. Mol. Cells. 2016; 39 (4): 322–329. DOI: 10.14348/molcells.2016.2292. PMID: 26923189

76. Kim K.S., Duignan K.M., Hawryluk J.M., Soh H., Tzingounis A.V. The voltage activation of cortical KCNQ channels depends on global PIP2 levels. Biophys. J. 2016; 110 (5): 1089–1098. DOI: 10.1016/j.bpj.2016.01.006. PMID: 26958886

77. Kim R.Y., Pless S.A., Kurata H.T. PIP2 mediates functional coupling and pharmacology of neuronal KCNQ channels. Proc. Natl. Acad. Sci. USA. 2017; 114 (45): E9702–E9711. DOI: 10.1073/pnas.1705802114. PMID: 29078287

78. Tian Y., Ullrich F., Xu R., Heinemann S.H., Hou S., Hoshi T. Two distinct effects of PIP2 underlie auxiliary subunit-dependent modulation of Slo1 BK channels. J. Gen. Physiol. 2015; 145 (4): 331–343. DOI: 10.1085/jgp.201511363. PMID: 25825171

79. Salzer I., Erdem F.A., Chen W.Q., Heo S., Koenig X., Schicker K.W., Kubista H., Lubec G., Boehm S., Yang J.W. Phosphorylation regulates the sensitivity of voltage-gated Kv7.2 channels towards phosphatidylinositol-4,5-bisphosphate. J. Physiol. 2017; 595 (3): 759–776. DOI: 10.1113/JP273274. PMID: 27621207

80. Thakur D.P., Tian J.B., Jeon J., Xiong J., Huang Y., Flockerzi V., Zhu M.X. Critical roles of Gi/o proteins and phospholipase C1 in the activation of receptor-operated TRPC4 channels. Proc. Natl. Acad. Sci. USA. 2016; 113 (4): 1092–1097. DOI: 10.1073/pnas.1522294113. PMID: 26755577

81. Kim E.C., Zhang J., Pang W., Wang S., Lee K.Y., Cavaretta J.P., Walters J., Procko E., Tsai N.P., Chung H.J. Reduced axonal surface expression and phosphoinositide sensitivity in Kv7 channels disrupts their function to inhibit neuronal excitability in Kcnq2 epileptic encephalopathy. Neurobiol. Dis. 2018; 118: 76–93. DOI: 10.1016/j.nbd.2018.07.004. PMID: 30008368

82. Avdonin P.V. Structure and signalling properties of G protein-coupled receptor complexes. Biologicheskie Membrany: Zhurnal Membrannoi i Kletochnoi Biologii. 2005; 22 (1): 3–26. [In Russ.]

83. Tkachuk V.A. Molecular mechanisms of neuroendocrine regulation. Sorosovsky Obrazovatelnyi Zhurnal. 1998; 4 (6): 16–21. [In Russ.]

84. Ching T.T., Wang D.S., Hsu A.L., Lu P.J., Chen C.S. Identification of multiple phosphoinositide-specific phospholipases D as new regulatory enzymes for phosphatidylinositol 3,4, 5-trisphosphate. J. Biol. Chem. 1999; 274 (13): 8611–8617. DOI: 10.1074/jbc.274.13.8611. PMID: 10085097

85. Sang Y., Cui D., Wang X. Phospholipase D and phosphatidic acid-mediated generation of superoxide in Arabidopsis. Plant Physiol. 2001; 126 (4): 1449–1458. DOI: 10.1104/pp.126.4.1449. PMID: 11500544

86. Kim S.T., Chung Y.H., Lee H.S., Chung S.J., Lee J.H., Sohn U.D., Shin Y.K., Park E.S., Kim H.C., Bang J.S., Jeong J.H. Protective effects of phosphatidylcholine on oxaliplatin-induced neuropathy in rats. Life Sci. 2015; 130: 81–87. DOI: 10.1016/j.lfs.2015.03.013. PMID: 25817232

87. Brown S.A., Morgan F., Watras J., Loew L.M. Analysis of phosphatidylinositol-4,5-bisphosphate signaling in cerebellar Purkinje spines. Biophys. J. 2008; 95 (4): 1795–1812. DOI: 10.1529/biophysj.108.130195. PMID: 18487300

88. Sieber F.E., Traystman R.J., Martin L.J. Delayed neuronal death after global incomplete ischemia in dogs is accompanied by changes in phospholipase C protein expression. J. Cereb. Blood Flow Metab. 1997; 17 (5): 527–533. DOI: 10.1097/00004647-199705000-00006. PMID: 9183290

89. Billah M.M., Anthes J.C. The regulation and cellular functions of phosphatidylcholine hydrolysis. Biochem. J. 1990; 269 (2): 281–291. DOI: 10.1042/bj2690281. PMID: 2201284

90. Bollag W.B., Zhong X., Dodd M.E., Hardy D.M., Zheng X., Allred W.T. Phospholipase d signaling and extracellular signal-regulated kinase-1 and -2 phosphorylation (activation) are required for maximal phorbol ester-induced transglutaminase activity, a marker of keratinocyte differentiation. J. Pharmacol. Exp. Ther. 2005; 312 (3): 1223–1231. DOI: 10.1124/jpet.104.075622. PMID: 15537826

91. Min D.S., Park S.K., Exton J.H. Characterization of a rat brain phospholipase D isozyme. J. Biol. Chem. 1998; 273 (12): 7044–7051. DOI: 10.1074/jbc.273.12.7044. PMID: 9507013

92. Llahi S., Fain J.N. Alpha 1-adrenergic receptor-mediated activation of phospholipase D in rat cerebral cortex. J. Biol. Chem. 1992; 267 (6): 3679–3685. PMID: 1310979

93. Bazan N.G., Tu B., Rodriguez de Turco E.B. What synaptic lipid signaling tells us about seizure-induced damage and epileptogenesis. Prog. Brain Res. 2002; 135: 175–185. DOI: 10.1016/S0079-6123(02)35017-9. PMID: 12143339

94. Sun Y.G., Rupprecht V., Zhou L., Dasgupta R., Seibt F., Beierlein M. mGluR1 and mGluR5 synergistically control cholinergic synaptic transmission in the thalamic reticular nucleus. J. Neurosci. 2016; 36 (30): 7886–7896. DOI: 10.1523/JNEUROSCI.0409-16.2016. PMID: 27466334

95. McDermontti M., Wakelam M.J., Morris A.J. Phospholipase D. Biochem. Cell Biol. 2004; 82 (1): 225–253. DOI: 10.1139/o03-079. PMID: 15052340

96. Liscovitch M., Chalifa V., Pertile P., Chen C.S., Cantley L.C. Novel function of phosphatidylinositol 4,5-bisphosphate as a cofactor for brain membrane phospholipase D. J. Biol. Chem. 1994; 269 (34): 21403–21406. PMID: 8063770

97. Gasull T., Sarri E., Degregorio-Rocasolano N., Trullas R. NMDA receptor overactivation inhibits phospholipid synthesis by decreasing choline-ethanolamine phosphotransferase activity. J. Neurosci. 2003. 23 (10): 4100– 4107. DOI: 10.1523/JNEUROSCI.23-10-04100.2003. PMID: 12764097

98. Adibhatla R.M., Hatcher J.F., Dempsey R.J. Cytidine-5’-diphosphocholine affects CTP-phosphocholine cytidylyltransferase and lyso-phosphatidylcholine after transient brain ischemia. J. Neurosci. Res. 2004; 767 (3): 390–396. DOI: 10.1002/jnr.20078. PMID: 15079868

99. Kozhura V.L. Neurobiological mechanisms of massive blood loss. Anesteziologiya i Reanimatologiya. 2001; 6: 51–53. PMID: 11855064. [In Russ.]

100. Persard S., Panagia V. Abnormal synthesis of N-methylated phospholipids during calcium paradox of the heart. J. Mol. Cell. Cardiol. 1995; 27 (1): 579–587. DOI: 10.1016/S0022-2828(08)80052-1. PMID: 7760378

101. Vartanyan A.A., Aprikyan G.V., Vanyushin V.F. Methylation of phospholipids and synaptic capture of mediator amino acids. Izvestiya Akademii Nauk SSSR. Seriya Biologicheskaya. 1990; 5: 786–789. [In Russ.]

102. Belokoneva O.S., Zaitsev S.V. The role of membrane lipids in regulating the function of neuromediator receptors. Biokhimiya. 1993; 58 (11): 1685–1708. PMID: 7903554. [In Russ.]

103. Fisenko V.P. Neurochemical relationships in the action of opioid analgesics on cerebral cortex. Byulleten Eksperimentalnoi Biologii i Meditsiny. 2001; 132 (7): 4–11. PMID: 11687833. [In Russ.]

104. Zhu W., Pan Z.Z. Mu-opioid-mediated inhibition of glutamate synaptic transmission in rat central amygdala neurons. Neuroscience. 2005; 133 (1): 97–103. DOI: 10.1016/j.neuroscience.2005.02.004. PMID: 15893634

105. Pourzitaki C.,Tsaousi G., Papazisis G., Kyrgidis A., Zacharis C., Kritis A., Malliou F., Kouvelas D. Fentanyl and naloxone effects on glutamate and GABA release rates from anterior hypothalamus in freely moving rats. Eur. J. Pharmacol. 2018; 834: 169–175. DOI: 10.1016/j.ejphar. 2018.07.029. PMID: 30030987

106. Kozhura V.L., Nosova N.V. Apoptosis as a mechanism of delayed posthypoxic encephalopathy. Byulleten Eksperimentalnoi Biologii i Meditsiny. 2000; Supplement 2: 30–32. [In Russ.]

107. Aki H.S., Fujita M., Yamashita S., Fujimoto K., Kumagai K., Tsuruta R., Kasaoka S., Aoki T., Nanba M., Murata H., Yuasa M., Maruyama I., Maekawa T. Elevation of jugular venous superoxide anion radical is associated with early inflammation, oxidative stress, and endothelial injury in forebrain ischemia-reperfusion rats. Brain Res. 2009; 1292: 180–190. DOI: 10.1016/j.brainres.2009.07.054. PMID: 19635469

108. Hwabejire J.O., Jin G., Imam A.M., Duggan M., Sillesen M., Deperalta D., Jepsen C.H., Lu J., Li Y., deMoya M.A., Alam H.B. Pharmacologic modulation of cerebral metabolic derangement and excitotoxicity in a porcine model of traumatic brain injury and hemorrhagic shock. Surgery. 2013; 154 (2): 234–243. DOI: 10.1016/j.surg.2013.04.008. PMID: 23889951

109. McDaniel M.A., Maier S.F., Einstein G.O. «Brain-specific» nutrients: a memory cure? Nutrition. 2003; 19 (11–12): 957–975. DOI: 10.1016/S0899-9007(03)00024-8. PMID: 14624946

110. Kingsley M. Effects of phosphatidylserine supplementation on exercising humans. Sports Med. 2006; 36 (8): 657–669. DOI: 10.2165/00007256200636080-00003. PMID: 16869708

111. Wong J.T., Tran K., Pierce G.N., Chan A.C., O K., Choy P.C. Lysophosphatidylcholine stimulates the release of arachidonic acid in human endothelial cells. J. Biol. Chem. 1998; 273 (12): 6830–6836. DOI: 10.1074/jbc.273.12.6830. PMID: 9506985

112. Ozaka H., Ishii K., Arai H., Kume N., Kita T. Lysophosphatidylcholine activates mitogen-activated protein kinases by a tyrosine kinase-dependent pathway in bovine aortic endothelial cells. Atherosclerosis. 1999; 143 (2): 261–266. DOI: 10.1016/S0021-9150(98)00297-4. PMID: 10217354

113. Bassa B.V., Roh D.D., Varzirl N.D., Kirschenbaum M.A., Kamanna V.S. Lysophosphatidylcholine activates mesangial cell PKC and MAP kinase by PLCgamma-1 and tyrosine kinase-Ras pathways. Am. J. Physiol. 1999; 277 (3): F328–F337. DOI: 10.1152/ajprenal.1999.277.3.F328. PMID: 10484515

114. Liu S.Y., Yu C.H., Hays J.A., Panagia V., Dhalla N.S. Modification of heart sarcolemmal phosphoinositide pathway by lysophosphatidylcholine. Biochim. Biophys. Acta. 1997; 1349 (3): 264–274. DOI: 10.1016/S00052760(97)00142-2. PMID: 9434141

115. Cox D.A., Cohen M.L. Lysophosphatidylcholine stimulates phospholipase D in human coronary endothelial cells: role of PKC. Am. J. Phisiol. 1996; 271 (4 Pt 2): H1706–H1710. DOI: 10.1152/ajpheart.1996.271.4.H1706. PMID: 8897967

116. Golfman L.S., Haughey N.J., Wong J.T., Jiang J.Y., Lee D., Geiger J.D., Choy P.C. Lysophosphatidylcholine induces arachidonic acid release and calcium overload in cardiac myoblastic H9c2 cells. J. Lipid. Res. 1999; 40 (10): 1818–1826. PMID: 10508201


Review

For citations:


Leskova G.F. Phospholipids of Synaptic Membranes in the Pathogenesis of Encephalopathy During Hemorrhagic Shock (Review). General Reanimatology. 2019;15(2):99-114. https://doi.org/10.15360/1813-9779-2019-2-99-114

Views: 1504


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)