Oxygen Regime and Exchange of Ammonia in the Sensomotor Cortex of Cats During Blood Loss and Hyperbaric Oxygenation
https://doi.org/10.15360/1813-9779-2020-2-64-76
Abstract
Purpose. To study the effect of hyperbaric oxygenation (HBO) on the oxygen regime and ammonia metabolism in the neurons of cat cortex in hemorrhagic shock.
Material and methods. Experiments were performed on 164 cats (males). The effect of HBO (3 ATA, 50 min) on cerebral blood flow (CBF), oxygen tension (PO2), the content of ammonia (Am), glutamine (Gn), glutamate (Gt), α-ketglutarate (α-KG), the activity of glutamate dehydrogenase (GDG), glutamine synthetase (GS), phosphate-dependent glutaminase (PDG) activity was studied in the sensorimotor cortex (SMC); the content of Am, GN and oxygen parameters in arterial (AB) blood and venous blood (VB) of the sagittal sinus in hemorrhagic shock caused by fractional bloodletting of their femoral artery at a rate of 10ml/kg/10 min in an average volume of 24±0.8 ml/kg, which was stopped with a decrease in systolic blood pressure to the level of 60.0±1.5 mm Hg. HBO was commenced on post-hemorrhagic minute 10 following the regimen of 3 ATA for 60 min.
Results. The decrease in CBF and PO2 in SMC develops as early as the 10th minute of hemorrhagic shock, progressing to the stage of hemorrhagic shock decompensation (60±14 min). Accumulation of Am in the SMC at the stage of hemorrhagic shock decompensation associated with stimulation of PDG and GDG activity, inhibition of hemorrhagic shock activity and deficiency of α-KG. HBO, without eliminating hypoxia in SMC, prevented the development of the decompensation stage in animals with GS, pathological accumulation of Am, and a decrease in the activity of hemorrhagic shock. HBO increases the Gn increment from the SMC, into the blood. Under HBO conditions, the stimulating effect of hypoxia on GDG activity remains, but the concentration of glutamate remains within the normal range, as does the activity of PDG.
Conclusion. Hyperbaric oxygenation, without eliminating hypoxia in SMC, which develops in hemorrhagic shock, prevents a violation of the exchange of ammonia in it, caused by acute non-compensated blood loss.
About the Authors
V. N. YakovlevRussian Federation
Viktor N. Yakovlev
10 Studentcheskaya Str., 394036 Voronezh
P. N. Savilov
Russian Federation
Pavel N. Savilov
4 Polevaya Str., 392524 Pokrovo-Prigorodnoe, Tambov District, Tambov Region
References
1. Moroz V.V., Ryzhkov I.A. Acute Blood Loss: Regional Blood Flow and Microcirculation (Review, Part I). Obshchaya Reanimatologiya=General Reanimatology. 2016; 12 (2): 66–89. [In Russ.] DOI: 10.15360/1813-9779-2016-2-66-89
2. Jakovlev V.N., Savilov P.N., Bulgakova Y.V. Glutamate Metabolism in Brain Structures in Experimental Hemorrhagic Shock. Obshchaya Reanimatologiya=General Reanimatology. 2017; 13 (1): 6–16. [In Russ.] DOI: 10.15360/1813-9779-2017-1-6-16
3. Boyarinov G.A., Simutis I.S., Nikolsky V.O., Deryugina A.V., Boyarinova L.V., Gordetsov A.S., Kuznetsov A.B. The Role of Ozonized Erythrocytic Mass Transfusion in the Restoration of Myocardial Morphological Changes during Blood Loss (Experimental Study). Obshchaya Reanimatologiya=General Reanimatology. 2018; 14 (3): 27–35. [In Russ.] DOI: 10.15360/1813-9779-2018-3-27-35
4. Ryzhkov I.A., Zarzhetsky Y.V., Novoderzhkina I.S. Effect of perfluorane on the regulation of skin blood flow in acute blood loss: experimental study. Obshchaya Reanimatologiya=General Reanimatology. 2015; 11 (6): 19–27. [In Russ.] DOI: 10.15360/1813-9779-2015-6-19-27
5. Jovenko I.A., Kobelyackij Yu.Yu., Caryov A.V., Kuz’miova E.A., Klimenko K.A., Dubovskaya L.L., Seleznyova U.V. Intensive therapy of blood loss, coagulopathy and hypovolemic shock in polytrauma Meditsina neotlozhnyh sostoyanij.2016; 75 (4): 64–71 [In Russ. ]
6. Savilov P.N. The effect of hyperbaric oxygenation on nitrogen metabolism in the spleen during liver resection against chronic tetrachloromethane hepatitis. Biologicheskij zhurnal Armenii. 2017; 69 (1): 39–46 [In Russ.]
7. Savilov P.N. The effect of hyperbaric oxygenation on the formation of urea by the operated liver. Medicina Kyrgyzstana. 2018; 1: 92–97 [In Russ.].
8. Lebedeva E.A., Belyaevskij S.A., Kaminskij M.Yu., Skoblo M.L., Khan E.A. Efficiency and safety of the targeted use of epoetin alpha, cytoflavin and hyperbaric oxygenation in the intensive treatment of severe concomitant injury. Anestesiol. i reanimatol. 2015; 4: 73 [In Russ.].
9. Zvyagin G.V., Zezikova E.I., Romasenko M.V. Organization and principles of work of the hyperbaric oxygenation department in the structure of a multidisciplinary emergency hospital. Mnogoprofilnyj statsionar. 2019: 6; 1 (9): 23–26 [In Russ.].
10. Luchakov Yu.I., Moskvin A.N., Shabanov P.D. The effect of blood flow on the saturation of brain tissue with oxygen during hyperbaric oxygenation. Obzory po klinicheskoj farmakologii i lekarstvennoj terapii. 2015; 13 (4): 37–41 [In Russ.].
11. Grechin V.V. Study of local blood flow in deep structures and cerebral cortex. Methods of clinical neurophysiology. — L.: Nauka (Science), 1977: 163–176 [In Russ.].
12. Berezovskij V.A. Oxygen tension in the tissues of animals and humans. Kiev: Naukova Dumka, 1975 [In Russ., In Ukr.].
13. Silakova A.I., Trubin G.P., Yavlikova A.I. Micromethod for determination of ammonia and glutamine in tissue trichloroacetic extracts. Voprosy meditsinskoj khimii. 1962; 8 (5): 538–544 [In Russ.].
14. Harris M. Studies regenerating a glutamine-like substance in blood and spinal fluid, including a method for its quantitative determination. J. Clin. Invest. 1943; 22 (4): 569–576.
15. Bernt E., Bergmeyer H.U. L-glutamatbestimmung mit GDH und NAD Metoden der enzym. Analyse-Herausg. H.U. Bergmeyer-Weincheim/Bergs Verlag. Chemie 1974; 2: 1749–1752.
16. Keller H., Muller-Beisenritz M., Neumann E. Eine Methode zur Ammoniakbestimmung in Capillarblut. Klin. Wsch.: 1967; 15: 314–319.
17. Schmidt E., Schmidt F.W. Glutamate dehydrogenase Metoden der enzym. Analyse-Herausg. H.U. Bergmeyer-Weincheim/Bergs Verlag. Chemie 1983: 3: 216–227.
18. Beaton J.R., Ozava G. Activity of liver glutaminases in vitamin B6-dificient rats J. Biol. Chem. 1955; 214 (2): 685–691. PMID: 14381406
19. Pushkin A.V., Evstigneeva Z.G., Kretovich V.L. Determination of glutamine synthetase activity in extracts from pea seeds by the formation of orthophosphate. Prikladnaya biohimiya i mikrobiologiya 1972; 3 (1): 96–90 [In Russ.].
20. Jonson D., Lardy I. Method in Enzimology — N.Y. 1972; 10: 94–102.
21. Hartree E.F. Determination of protein a modification of the Loury method that gives a linear photometric respons Anal. Biochem. 1972; 43 (2): 422–427. PMID: 4115981.
22. Glantz St. A. Primer of Biostatistics. N.Y.: McGraw-Hill Inc, 1994. ISBN 0-07-024268-2
23. Leonov A.N. Hyperoxia Adaptation. Sanogenesis Voronezh: Voronezh State Medical Academy.: 2006: 190 [In Russ.] ISBN5-91132-003-7.
24. Kosenko E.A., Kaminskij Yu.G. Cellular mechanisms of ammonia toxicity M.: LCI. 2007 [In Russ.]. ISBN 978-5-382-00524-9
25. Lopachyov A.V., Lopachyova O.M., Akkuratov E.E., Stvolinskij S.L., Fyodorova T.N. Carnosine Protects Primary Cerebellar Cell Culture From Acute Toxicity NMDA. Nejrokhimiya. 2017; 34 (1): 49–53 [In Russ.].
26. Ssavilov P. Der Arginaseaktivitӓtzustand von hepatozyten bei verschiedenen Arten der Leberschӓdigung und Hyperoxia Ӧsterreichisches Multiscience Journal 2019; 1 (20): 37–42.
27. Orlov Yu.P. On the toxicity of oxygen and the role of succinates as a natural defense factor. StPb: Tactic-Syudio, 2017 [In Russ.]. ISBN: 978-5-91644-123–129.
28. Savilov P. Some aspects of Leonov’s teachings on the hyperoxic sanogenesis Norwegian Journal of development of the International Science 2019; 1 (33): 22–31.
Review
For citations:
Yakovlev V.N., Savilov P.N. Oxygen Regime and Exchange of Ammonia in the Sensomotor Cortex of Cats During Blood Loss and Hyperbaric Oxygenation. General Reanimatology. 2020;16(2):64-76. https://doi.org/10.15360/1813-9779-2020-2-64-76