Preview

General Reanimatology

Advanced search

The Effect of Lithium Chloride on Neutrophil Activation on Exposure to Serum of Patients with Septic Shock

https://doi.org/10.15360/1813-9779-2020-5-45-55

Abstract

The aim of the study: to examine the anti-inflammatory effect of lithium chloride by exposing the human neutrophils to serum of patients with septic shock in vitro.
Material and methods. The study was carried out on neutrophils extracted from the blood of 6 healthy donors, which were activated with serum from patients with septic shock. The neutrophil activity was evaluated with fluorescent antibodies to the CD11b and CD66b markers of degranulation. The level of human neutrophil apoptosis and necrosis was assessed 22 hours after extraction; quantitative assessment was made using annexin V and propidium iodide with flow cytofluorimetry. Intact and activated neutrophils were treated with 0.3, 3.0 and 9.0 mmol lithium chloride solution.
Results. The level of CD11b expression on the surface of intact neutrophils (healthy donors) was 3434.50 [3311.0-3799.0] arbitrary fluorescence units (AFU). Incubation of neutrophils with serum of patients with septic shock increased CD11b expression 2.5 times to 8589.0 [7279.0-11258.0] AFU (P=0.005) vs intact leukocytes, and increased CD66b expression 2.7 times up to 27 600.0 [22 999.0-28 989.0] AFU ((P=0.005) vs intact neutrophils. Lithium chloride in concentrations of 0.3, 3.0 and 9.0 mmol in a dose-dependent manner reduced the level of expression of CD11b and CD66b molecules on the surface of activated neutrophils. Septic serum reduced spontaneous neutrophil apoptosis, and 3.0 mmol and higher lithium chloride solution induced spontaneous neutrophil apoptosis.
Conclusion. Lithium chloride reduces the activation of neutrophils preactivated by serum of patients with septic shock, reduces expression of CD11b and CD66b molecules on the neutrophil surface, inhibiting the process of their activation (degranulation). Lithium chloride in concentration of 3.0 mmol and higher is able to induce spontaneous apoptosis of neutrophils activated by serum of patients with septic shock.

About the Authors

O. A. Grebenchikov
V.A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation

Oleg A. Grebenchikov.
25 Petrovka Str., Bldg. 2, 107031 Moscow.



I. S. Kasatkina
V.A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation

Irina S. Kasatkina.
25 Petrovka Str., Bldg. 2, 107031 Moscow.



K. K. Kadantseva
V.A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation

Kristina K. Kadantseva.
25 Petrovka Str., Bldg. 2, 107031 Moscow.



M. A. Meshkov
V.A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation

Mikhail A. Meshkov.
25 Petrovka Str., Bldg. 2, 107031 Moscow.



A. A. Bayeva
V.A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation

Anastasiya A. Bayeva.
25 Petrovka Str., Bldg. 2, 107031 Moscow.



References

1. Balk R.A. Systemic inflammatory response syndrome (SIRS): Where did it come from and is it still relevant today? Virulence. 2014; 5 (1): 20–26. DOI: 10.4161/viru.27135. PMID: 24280933.

2. Qin L., Wu X., Block M.L., Liu Y., Breese G.R., Hong J-S., Knapp D.J., Crews F.T. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia. 2007; 55: 453–462. DOI: 10.1002/glia.20467. PMID: 17203472.

3. Alexander J.J., Jacob A., Cunningham P., Hensley L., Quigg R.J. TNF is a key mediator of septic encephalopathy acting through its receptor, TNF receptor-1. Neurochem Int. 2008; 52: 447–456. DOI: 10.1016/j.neuint.2007.08.00.

4. Jaffer U., Wade R.G., Gourlay T. Cytokines in the systemic inflammatory response syndrome: a review. HSR Proc. Intensive Care Cardiovasc. Anesth. 2010; 2 (3): 161–75. PMID: 23441054.

5. Parkos A., Colgan P., Madara J.L. Interaction of Neutrophils With Epithelial Cells: Lessons From the Intestine. J Am Soc Nephrol.1994; 5 (2): 138–152. PMID: 7993993.

6. Schmidt T., Zündorf J., Grüger T., Brandenburg K., Reiners A.L., Zinserling J., Schnitzler N. CD66b overexpression and homotypic aggregation of human peripheral blood neutrophils after activation by a gram-positive stimulus. J. Leukoc. Biol. 2012; 91 ( 5): 791–802. DOI: 10.1189/jlb.0911483. PMID: 22319104.

7. Lilius E.M., Nuutila J. Bacterial infections, DNA virus infections, and RNA virus infections manifest differently in neutrophil receptor expression. Scientific World J. 2012: 527347. DOI: 10.1100/2012/527347. PMID: 22536142.

8. Muller Kobold A., Tulleken J.E., Zijlstra J.G., Sluiter W., Hermans J. Leukocyte activation in sepsis; Сorrelations with disease state and mortality. Intensive Care Med. 2000 Jul; 26 (7): 883–892. DOI: 10.1007/s001340051277. PMID: 10990102.

9. Boomer J.S., Green J.M., Hotchkiss R.S. The changing immune system in sepsis. Virulence. 2014; 5 (1): 45–56. DOI: 10.4161/viru.26516. PMID: 24067565.

10. Klein P.S., Melton D.A. A molecular mechanism for the effect of lithium on development. Proc. Natl.Acad. Sci. 1996; 93 (16): 8455–8459. DOI: 10.1073/pnas.93.16.8455. PMID: 8710892.

11. Stambolic V., Ruel, L., Woodgett J.R. Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr. Biol. 1996 Dec 1; 6 (12): 1664–1668. DOI: 10.1016/s0960-9822(02)70790-2. PMID: 8994831.

12. Zorov D.B., Kim S.H., Pepe S., Fu Q., Fishbein K.W., Ziman B.D., Wang S., Ytrehus K., Antos C.L., Olson E.N., Sollott S.J. Glycogen synthase kinase-3beta mediatesconvergence of protection signaling to inhibit the mitochondrial permeability transition pore. J. Clin. Invest. 2004; 113 (11): 1535–1549. DOI: 10.1172/JCI19906. PMID: 15173880.

13. Vasilyeva A.K., Plotnikov E.Yu., Kazachenko A.V., Kirpatovsky V.I., Zorov D.B. Inhibition of GSK_3b reduces ischemia-induced renal cell death. Bull. Exp. Biol. Med. 2010; 149 (3): 276–281. [In Russ.].

14. Grebenchikov O.A., Lobanov A.V., Shaikhutdinova E.R., Kuzovlev A.N., Ershov A.V., Likhvantsev V.V. Cardioprotective effect of lithium chloride on a rat model of myocardial infarction. Patologiya krovoobrashcheniya I kardiokhirurgiya. 2019; 23 (2): 43–49. DOI: 10.21688/1681-3472-2019-2-43-49. [In Russ.].

15. Ostrova I.V., Grebenchikov O.A., Golubeva N.V. Neuroprotective Effect of Lithium Chloride in Rat Model of Cardiac Arrest. General Reanimatology=Obshchaya Reanimatologiya. 2019; 15 (3): 73–82. DOI: 10.15360/1813-9779-2019-3-73-82. [In Russ.].

16. Albayrak A., Halici Z., Polat B., Karakus E., Cadirci E., Bayir Y., Kunak S., Karcioglu S.S., Yigit S., Unal D., Atamanalp S.S. Protective effects of lithium: a new look at an old drug with potential antioxidative and antiinflammatory effects in an animal model of sepsis. Int. mmunopharmacol. 2013; 16 (1): 35–40. DOI: 10.1016/j.intimp.2013.03.018. PMID: 23542012.

17. Haimovich A., Eliav U., Goldbourt A. Determination of the lithium binding site in inositol monophosphatase, the putative target for lithium therapy, by magic-angle-spinning solid-state NMR. J. Am. Chem.Soc. 2012;134 (12): 5647–5651. DOI: 10.1021/ja211794x. PMID: 22384802.

18. Moroz V.V., Silachev D.N., Plotnikov E.Yu., Zorova L.D., Pevzner I.B., Grebenchikov O.A., Likhvantsev V.V. Mechanisms of cell damage and protection in ischemia/reperfusion and experimental rationale for the use of lithium-based preparations in anesthesiology. General Reanimatology=Obshchaya Reanimatologiya. 2013. 9 (1): 63–72.

19. Yu F., Wang Z., Tchantchou F., Chiu C.T., Zhang Y., Chuang D.M. Lithium ameliorates neurodegeneration, suppresses neuroinflammation, and improves behavioral performance in a mouse model of traumatic brain injury. J. Neurotrauma. 2012; 29 (2): 362–374. DOI: 10.1089/neu.2011.1942. PMID: 21895523.

20. Hofmann C., Dunger N., Scholmerich J., Falk W.,Obermeier F. Glycogen synthase kinase 3-beta: a master regulator of toll-like receptormediated chronic intestinal inflammation, Inflamm. Bowel Dis. 2010 Nov; 16 (11): 1850–1858. DOI: 10.1002/ibd.21294. PMID: 20848477.

21. Seymour C.W., Liu V.X., Iwashyna T.J. Brunkhorst F.M., Rea T.D., André Scherag A., Rubenfeld G., Kahn J.M., Shankar-Hari M., Singer M., Deutschman S.C., Escobar G.J., Angus D.S. Assessment of clinical criteria for sepsis: for the Third International Consensus Definitions for Sepsis andSeptic Shock (Sepsis-3). JAMA. 2016; 315 (8): 762–774. DOI: 10.1001/jama.2016.0288. PMID: 26903335.

22. Pillay J., Braber I., Vrisekoop N., Kwast L.M., Boer R.J., Borghans J., Tesselaar K., Koenderman L. In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days. Blood. 2010; 116 (4): 625–627. DOI: 10.1182/blood-2010-01-259028. PMID: 20410504.

23. Bartels M., Murphy K., Rieter E., Bruin M. Understanding chronic neutropenia: Life isshort. British Journal of Haematology. 2016; 172 (2): 157–169. DOI: 10.1111/bjh.13798. PMID: 26456767.

24. Petrini M., Azzarà A. Lithium in the Treatment of Neutropenia. Curr Opin Hematol. 2012 Jan; 19 (1): 52–57. DOI: 10.1097/MOH.0b013e32834da93b. PMID: 22123660.


Review

For citations:


Grebenchikov O.A., Kasatkina I.S., Kadantseva K.K., Meshkov M.A., Bayeva A.A. The Effect of Lithium Chloride on Neutrophil Activation on Exposure to Serum of Patients with Septic Shock. General Reanimatology. 2020;16(5):45-55. https://doi.org/10.15360/1813-9779-2020-5-45-55

Views: 1021


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)