Preview

Общая реаниматология

Расширенный поиск

Енолазы: ограничения внедрения в клиническую практику (обзор-дискуссия)

Аннотация

Енолазы участвуют в утилизации глюкозы (путь Эмбдена-Мейергофа-Парнаса), имеющего исключительно важное значение в обеспечении клеток энергией в условиях гипоксии при критических состояниях. Енолазы привлекают внимание в связи с возможностью их использования в качестве диагностического маркера при критических состояниях.

Цель обзора: анализ причин, ограничивающих клиническое применение енолаз в диагностических и прогностических целях при критических состояниях.

Критерием отбора 87 публикаций из баз данных PubMed и elibrary являлись предложения авторов и официальные рекомендации по клиническому применению енолаз в диагностических и прогностических целях.

Рассмотрели характеристику молекулярных форм енолаз, клинические аспекты и рекомендации клинического применения енолаз, методологические и методические ошибки при их исследовании. Выделили следующие дискутабельные вопросы: определение  концентрации  енолаз не отражает  ферментативную  активность  их множественных молекулярных форм; выявление молекулярных форм енолаз с помощью антител к структурной субъединице не позволяет оценить истинное содержание и ферментативную активность каждой молекулярной формы (например, γ- и αγ-енолазы); представление о том, что гетеродимеры являются клеточноспецифическими (в частности, нейрон-специфическая αγ-енолаза) не подтверждается имеющимися исследованиями, поскольку данный изофермент обнаруживается в клетках различных органов; не учитывается ряд методических условий (скрытый гемолиз, отсутствие унифицированных методов исследования и т.д.).

Заключение. Исследования, которые будут выполняться на методологической платформе с применением методов, позволяющих оценивать содержание и ферментативную активность каждой молекулярной формы енолазы, позволят получить новую информацию в рамках персонализированной медицины о роли конкретных молекулярных форм енолазы в патогенезе заболеваний и оценить их диагностическое и прогностическое значение, а также эффективность лечебных мероприятий.

Об авторе

А. М. Голубев
НИИ общей реаниматологии им. В. А. Неговского Федерального научно-клинического центра реаниматологии и реабилитологии
Россия

Голубев Аркадий Михайлович

107031, г. Москва, ул. Петровка, д. 25, стр. 2



Список литературы

1. Atkinson A.J., Colburn W.A., DeGruttola A.G., DeMets D.L., Downing G.J, Hoth J.F., Colburn W.A., et al. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001; 69 (3): 89–95. DOI: 10.1067/mcp.2001.113989. PMID: 11240971.

2. Kamtchum-Tatuene J., Jickling G.C. Blood biomarkers for stroke diagnosis and management. Neuromolecular Med. 2019; 21 (4): 344–368. DOI: 10.1007/s12017-019-08530-0. PMID: 30830566.

3. Голубев А.М. Персонализированная медицина критических состояний (обзор). Общая реаниматология. 2022; 18 (4): 45–54. DOI: 10.15360/1813-9779-2022-4-45-54.

4. Голубев А.М., Гречко А.В., Захарченко В.Е., Канарский М.М., Петрова М.В., Борисов И.В. Сравнительная характеристика содержания кандидатных молекулярных маркеров при ишемическом и геморрагическом инсульте. Общая реаниматология. 2021; 17 (5): 23–34. DOI: 10.15360/1813-9779-2021-5-23-34.

5. Тынтерова А.М., Моисеева Е.М., Голубев А.М., Шушарина Н.Н. Роль эндотелинергических и нитроксидергических реакций в прогнозировании функционального исхода пациентов с различной степенью тяжести ишемического инсульта. Общая реаниматология. 2023; 19 (5): 13–20. DOI: 10.15360/1813-9779-2023-5-2354.

6. Хаджиева М.Б., Грачева А.С., Ершов А.В., Чурсинова Ю.В., Степанов В.А., Авдейкина Л.С., Гребенчиков О.А., с соавт. Биомаркеры повреждения структур аэрогематического барьера при COVID-19. Общая реаниматология. 2021; 17 (3): 16–31. DOI: 10.15360/1813-9779-2021-3-2-0.

7. Бабкина А.С., Голубев А.М., Острова И.В., Волков А.В., Кузовлев А.Н. Морфологические изменения головного мозга при COVID-19. Общая реаниматология. 2021; 17 (3): 4–15. DOI: 10.15360/1813-9779-2021-3-1-0.

8. Meyerhof O., Lohmann K. Uber die enzymatische Gleichgewichtsreaktion zwischen Hexosediphosphorsure und Dioxyacetonphosphorsaure. Naturwissenschaften. 1934; 22 (14): 220–220. DOI: 10.1007/BF01491731.

9. McALEESE S.M., Dunbar B., Fothergill J.E., Hinks L.J., Day I.N. Complete amino acid sequence of the neurone-specific γ isozyme of enolase (NSE) from human brain and comparison with the non‐neuronal γ form (NNE). Eur J Biochem. 1988; 178 (2): 413–417. DOI: 10.1111/j.1432-1033.1988.tb14465.x. PMID: 3208766.

10. Fuller G.G., Kim J.K. Compartmentalization and metabolic regulation of glycolysis. J Cell Sci. 2021; 134 (20): jcs258469. DOI: 10.1242/jcs.258469. PMID: 34668544.

11. Piast M., Kustrzeba-Wójcicka I., Matusiewicz M., Banaś T. Molecular evolution of enolase. Acta Biochim Pol. 2005; 52 (2): 507–513. DOI: 10.18388/abp.2005_3466. PMID: 15912209.

12. Seki S.M., Gaultier A. Exploring non-metabolic functions of glycolytic enzymes in immunity. Front. Immunol. 2017; 8: 1549. DOI: 10.3389/fimmu.2017.01549. PMID: 29213268.

13. Nakamura K., Miyasho T., Nomura S., Yokota H., Nakade T. Proteome analysis of cerebrospinal fluid in healthy beagles and canine encephalitis. J Vet Med Sci. 2012; 74 (6): 751–756. DOI: 10.1292/jvms.11-0474. PMID: 22251802.

14. Edwards Y.H., Grootegoed J.A. A sperm-specific enolase. J Reprod Fertil. 1983; 68 (2): 305–310. DOI: 10.1530/jrf.0.0680305. PMID: 6864646.

15. Xu C.-M., Luo Y.-L., Li S., Li Z.-X., Jiang L., Zhang G.-X., Owusu L., et al. Multifunctional neuron-specific enolase: its role in lung diseases. Biosc Rep. 2019; 39 (11): BSR20192732. DOI: 10.1042/BSR20192732. PMID: 31642468.

16. Rider C.C., Taylor C.B. Enolase isoenzymes: II. Hybridization studies, developmental and phylogenetic aspects. Biochimica et Biophysica Acta (BBA) — Protein Structure. 1975; 405 (1): 175–187. DOI: 10.1016/0005-2795(75)90328-1.

17. Gerlt J.A., Babbitt P.C., Rayment I. Divergent evolution in the enolase superfamily: the interplay of mechanism and specificity. Arch Biochem Biophys. 2005; 433 (1): 59–70. DOI: 10.1016/j.abb.2004.07.034. PMID: 15581566.

18. Jickling G.C., Sharp F.R. Blood biomarkers of ischemic stroke. Neurotherapeutics. 2011; 8 (3): 349–360. DOI: 10.1007/s13311-011-0050-4. PMID: 21671123.

19. Díaz-Ramos À., Roig-Borrellas A., García-Melero A., LópezAlemany R. α-enolase, a multifunctional protein: its role on pathophysiological situations. J Biomed Biotechnol. 2012; 2012: 156795. DOI: 10.1155/2012/156795. PMID: 23118496.

20. Didiasova M., Schaefer L., Wygrecka M. When place matters: shuttling of enolase-1 across cellular compartments. Front Cell Dev Biol. 2019; 7: 61. DOI: 10.3389/fcell.2019.00061. PMID: 31106201.

21. Merkulova T., Dehaupas M., Nevers M.C., Créminon C., Alameddine H., Keller A. Differential modulation of α, β and γ enolase isoforms in regenerating mouse skeletal muscle. Eur J Biochem. 2000; 267 (12): 3735–3743. DOI: 10.1046/j.1432-1327.2000.01408.x. PMID: 10848992.

22. Marangos P.J., Schmechel D., Zis A.P., Goodwin F.K. The existence and neurobiological significance of neuronal and glial forms of the glycolytic enzyme enolase. Biol Psychiatry. 1979; 14 (4): 563–579. PMID: 385064.

23. Marangos P.J., Schmechel D.E., Parma A.M., Goodwin F.K. Developmental profile of neuron-specific (NSE) and nonneuronal (NNE) enolase. Brain Res. 1980; 190 (1): 185–193. DOI: 10.1016/0006-8993 (80)91168-3. PMID: 6769532.

24. Capello M., Ferri‐Borgogno S., Cappello P., Novelli F.α‐Enolase: a promising therapeutic and diagnostic tumor target. FEBS J. 2011; 278 (7): 1064–1074. DOI: 10.1111/j.1742-4658.2011.08025.x. PMID: 21261815.

25. Qiao G., Wu A., Chen X., Tian Y., Lin X. Enolase 1, a moonlighting protein, as a potential target for cancer treatment. Int J Biol Sci. 2021; 17 (14): 3981–3992. DOI: 10.7150/ijbs.63556. PMID: 34671213.

26. Lee C.-H., Tsai C.-H., Leu S.-J., Liu K.-J., Wang W.-C., Tsai B.- Y., Chiang L.-C., et al. Generation and characterization of avian single chain variable fragment against human Alpha-Enolase. Int Immunopharmacol. 2023; 120: 110277. DOI: 10.1016/j.intimp.2023.110277. PMID: 37196558.

27. Zhang K., Tian R., Zhang W., Li Y., Zeng N., Liang Y., Tang S. α-Enolase inhibits apoptosis and promotes cell invasion and proliferation of skin cutaneous melanoma. Mol Biol Rep. 2022; 49 (9): 8241–8250. DOI: 10.1007/s11033-022-07540-9. PMID: 35925486.

28. Huang C.K., Lv L., Chen H., Sun Y., Ping Y. ENO1 promotes immunosuppression and tumor growth in pancreatic cancer. Clin Transl Oncol. 2023; 25 (7): 2250–2264. DOI: 10.1007/s12094-023-03114-8. PMID: 36820953.

29. Zang H.-Y., Gong L.-G., Li S.-Y., Hao J.-G. Inhibition of α-enolase affects the biological activity of breast cancer cells by attenuating PI3K/Akt signaling pathway. Eur Rev Med Pharmacol Sci. 2020; 24 (1): 249–257. DOI: 10.26355/eurrev_202001_19917. PMID: 31957838.

30. Inoue Y., Tasaki M., Masuda T., Misumi Y., Nomura T., Ando Y., Ueda M. α-Enolase reduces cerebrovascular Aβ deposits by protecting Aβ amyloid formation. Cell Mol Life Sci. 2022; 79 (8): 462. DOI: 10.1007/s00018-022-04493-x. PMID: 35916996.

31. Vadlamani S., Karmakar R., Kumar A., Rajala M.S. Nonmetabolic role of alpha-enolase in virus replication. Mol Biol Rep. 2023; 50 (2): 1677–1686. DOI: 10.1007/s11033-022-08067-9. PMID: 36402937.

32. Ogata M., Tsuganezawa O. Neuron-specific enolase as an effective immunohistochemical marker for injured axons after fatal brain injury. Int J Legal Med. 1999; 113 (1): 19–25. DOI: 10.1007/s004140050273. PMID: 10654234.

33. Dagonnier M., Donnan G.A., Davis S.M., Dewey H.M., Howells D.W. Acute stroke biomarkers: are we there yet? Front. Neurol. 2021; 12: 619721. DOI: 10.3389/fneur.2021.619721. PMID: 33633673.

34. Gójska-Grymajło A., Zieliński M., Wardowska A., Gąsecki D., Pikuła M., Karaszewski B. CXCR7+ and CXCR4+ stem cells and neuron specific enolase in acute ischemic stroke patients. Neurochem Int. 2018; 120: 134–139. DOI: 10.1016/j.neuint.2018.08.009. PMID: 30125595.

35. Kim B.J., Kim Y.-J., Ahn S.H., Kim N.Y., Kang D.-W., Kim J.S., Kwon S.U. The second elevation of neuron-specific enolase peak after ischemic stroke is associated with hemorrhagic transformation. J Stroke Cerebrovasc Dis. 2014; 23 (9): 2437–2443. DOI: 10.1016/j.jstrokecerebrovasdis.2014.05.020. PMID: 25183561.

36. Kurakina A.S., Semenova T.N., Guzanova E.V., Nesterova V.N., Schelchkova N.A., Mukhina I.V., Grigoryeva V.N. Prognostic value of investigating neuron-specific enolase in patients with ischemic stroke. Sovrem Tekhnologii Med. 2021; 13 (2): 68–72. DOI: 10.17691/stm2021.13.2.08. PMID: 34513079.

37. Kawle A.P., Nayak A.R., Lande N.H., Kabra D.P., Chandak N.H., Badar S.R., Raje D.V., et al. Comparative evaluation of risk factors, outcome and biomarker levels in young and old acute ischemic stroke patients. Ann Neurosci. 2015; 22 (2): 70–77. DOI: 10.5214/ans.0972.7531.220204. PMID: 26130910.

38. Bharosay A., Bharosay V.V., Saxena K., Varma M. Role of brain biomarker in predicting clinical outcome in hypertensive cerebrovascular ischemic stroke. Ind J Clin Biochem. 2018; 33 (2): 178–183. DOI: 10.1007/s12291-017-0664-3. PMID: 29651208.

39. Iłżecki J., Przywara S., Terlecki P., Grabarska A., Stepulak A., Zubilewicz T. Serum neuron-specific enolase as a marker of brain ischemia-reperfusion injury in patients undergoing carotid endarterectomy. Acta Clin Croat. 2016; 55 (4): 579–583. DOI: 10.20471/acc.2016.55.04.07 PMID: 29117648.

40. Glushakova O.Y., Glushakov A.V., Miller E.R., Valadka A.B., Hayes R.I. Biomarkers for acute diagnosis and management of stroke in neurointensive care units. Brain Circ. 2016; 2 (1): 28–47. DOI: 10.4103/2394-8108.178546. PMID: 30276272.

41. Khandare P., Saluja A., Solanki R.S., Singh R., Vani K., Garg D., Dhamija R.K. Serum S100B and NSE levels correlate with infarct size and bladder-bowel involvement among acute iischemic stroke patients. J Neurosc Rural Pract. 2022; 13 (2): 218–225. DOI: 10.1055/s-0042-1743214. PMID: 35694066.

42. Gao L., Xie J., Zhang H., Zheng H., Zheng W., Pang C., Cai Y., et al. Neuron-specific enolase in hypertension patients with acute ischemic stroke and its value forecasting longterm functional outcomes. BMC Geriatr. 2023; 23 (1): 294. DOI: 10.1186/s12877-023-03986-z. PMID: 37189072.

43. Kang C., You Y., Ahn H.J., Park J.S., Jeong W., Min J.H., In Y.N., et al. Blood–brain barrier disruption as a cause of various serum neuron-specific enolase cut-off values for neurological prognosis in cardiac arrest patients. Sci Rep. 2022; 12 (1): 2186. DOI: 10.1038/s41598-022-06233-4. PMID: 35140324.

44. Kim S.H., Kim H.J., Park K.N., Choi S.P., Lee B.K., Oh S.H., Jeung K.W., et al. Neuron-specific enolase and neuroimaging for prognostication after cardiac arrest treated with targeted temperature management. PLoS ONE. 2020; 15 (10): e0239979. DOI: 10.1371/journal.pone.0239979. PMID: 33002033.

45. Lee J.H., Kim Y.H., Lee J.H., Lee D.W., Hwang S.Y., Youn C.S., Kim J.-H., et al. Combination of neuron-specific enolase measurement and initial neurological examination for the prediction of neurological outcomes after cardiac arrest. Sci Rep. 2021; 11 (1): 15067. DOI: 10.1038/s41598-021-94555-0. PMID: 34302037.

46. Kang C., Jeong W., Park J.S., You Y., Min J.H., Cho Y.C., Ahn H.J. Comparison of prognostic performance between neuron-specific enolase and S100 calcium-binding protein B obtained from the cerebrospinal fluid of out-of-hospital cardiac arrest survivors who underwent targeted temperature management. J Clin Med. 2021; 10 (7): 1531. DOI: 10.3390/jcm10071531. PMID: 33917473.

47. Zhai Q., Feng L., Zhang H., Wu M., Wang D., Ge H., Li S., et al. Serial disseminated intravascular coagulation score with neuron specific enolase predicts the mortality of cardiac arrest—a pilot study. J Thorac Dis. 2020; 12 (7): 3573–3581. DOI: 10.21037/jtd-20-580. PMID: 32802436.

48. Huang H.-B., Huang J.-L., Xu X.-T., Huang K.-B., Lin Y.-J., Lin J.-B., Zhuang X.-B. Serum neuron-specific enolase: a promising biomarker of silicosis. World J Clin Cases. 2021; 9 (5): 1016–1025. DOI: 10.12998/wjcc.v9.i5.1016. PMID: 33644165.

49. Cione E., Siniscalchi A., Gangemi P., Cosco L., Colosimo M., Longhini F., Luciani F., et al. Neuron-specific enolase serum levels in COVID-19 are related to the severity of lung injury. PLoS ONE. 2021; 16 (5): e0251819. DOI: 10.1371/journal.pone.0251819. PMID: 34010310.

50. Li L., Zhang Z., Hu Y. Neuron — specific enolase predicts the prognosis in advanced small cell lung cancer patients treated with first-line PD-1/PD-L1 inhibitors. Medicine (Baltimore). 2021; 100 (36): e27029. DOI: 10.1097/MD.0000000000027029. PMID: 34516493.

51. Lu L., Zha Z., Zhang P., Wang P., Liu X., Fang X., Weng C., et al. Neuron-specific enolase promotes stem cell-like characteristics of small-cell lung cancer by downregulating NBL1 and activating the BMP2/Smad/ID1 pathway. Oncogenesis. 2022; 11 (1): 21. DOI: 10.1038/s41389-022-00396-5. PMID: 35487890.

52. Park T., Lee Y.-J., Jeong S.-H., Choi S.-K., Jung E.-J., Ju Y-T., Jeong C.-Y., et al. Overexpression of neuron-specific enolase as a prognostic factor in patients with gastric cancer. J Gastric Cancer. 2017; 17 (3): 228–236. DOI: 10.5230/jgc.2017.17.e28. PMID: 28970953.

53. Chung-Esaki H.M., Mui G., Mlynash M., Eyngorn I., Catabay K., Hirsch K.G. The neuron specific enolase (NSE) ratio offers benefits over absolute value thresholds in postcardiac arrest coma prognosis. J Clin Neurosci. 2018; 57: 99–104. DOI: 10.1016/j.jocn.2018.08.020. PMID: 30145080.

54. Huţanu A., Iancu M., Bălaşa R., Maier S., Dobreanu M. Predicting functional outcome of ischemic stroke patients in Romania based on plasma CRP, sTNFR-1, D-Dimers, NGAL and NSE measured using a biochip array. Acta Pharmacol Sin. 2018; 39 (7): 1228–1236. DOI: 10.1038/aps.2018.26. PMID: 29926842.

55. Anand N., Stead L.G. Neuron-specific enolase as a marker for acute ischemic stroke: a systematic review. Cerebrovasc Dis. 2005; 20 (4): 213–219. DOI: 10.1159/000087701. PMID: 16123539.

56. Топузова М.П., Алексеева Т.М., Панина Е.Б., Вавилова Т.В., Ковзелев П.Д., Портик О.А., Скоромец А.А. Возможность использования нейрон-специфической енолазы как биомаркера в остром периоде инсульта. Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2019; 119 (8–2): 53–62. DOI: 10.17116/jnevro201911908253. PMID: 31825363.

57. Pujol-Calderón F., Zetterberg H., Portelius E., Hendén P.L., Rentzos A., Karlsson J.-E., Höglund K., et al. Prediction of outcome after endovascular embolectomy in anterior circulation stroke using biomarkers. Transl Stroke Res. 2022; 13 (1): 65–76. DOI: 10.1007/s12975-021-00905-5. PMID: 33723754.

58. Pelinka L.E., Hertz H., Mauritz W., Harada N., Jafarmadar M., Albrecht M., Redl H., et al. Nonspecific increase of systemic neuron-specific enolase after trauma: clinical and experimental findings: Shock. 2005; 24 (2): 119–123. DOI: 10.1097/01.shk.0000168876.68154.43. PMID: 16044081.

59. Nomura M., Kato K., Nagasaka A., Shiga Y., Miyagi Y., Fukui R., Nakano H. et al. Serum beta-enolase in acute myocardial infarction. Br Heart J. 1987; 58 (1): 29–33. DOI: 10.1136/hrt.58.1.29. PMID: 3620239.

60. Royds J.A., Variend S., Timperley W.R., Taylor C.B. An investigation of beta enolase as a histological marker of rhabdomyosarcoma. J Clin Pathol. 1984; 37 (8): 905–910. DOI: 10.1136/jcp.37.8.905. PMID: 6381545.

61. Vizin T., Kos J. Gamma-enolase: a well-known tumour marker, with a less-known role in cancer. Radiol Oncol. 2015; 49 (3): 217–226. DOI: 10.1515/raon-2015-0035. PMID: 26401126.

62. Comi G.P., Fortunato F., Lucchiari S., Bordoni A., Prelle A., Jann S., Keller A., et al. Beta-enolase deficiency, a new metabolic myopathy of distal glycolysis. Ann Neurol. 2001; 50 (2): 202–207. DOI: 10.1002/ana.1095. PMID: 11506403.

63. Chosa E., Sekimoto T., Sonoda N., Yamamoto K., Matsuda H., Takahama K., Tajima N. Evaluation of human betaenolase as a serum marker for exercise-induced muscle damage. Clin J Sport Med. 2003; 13 (4): 209–212. DOI: 10.1097/00042752-200307000-00003. PMID: 12855922.

64. Musumeci O., Brady S., Rodolico C., Ciranni A., Montagnese F., Aguennouz M., Kirk R., et al. Recurrent rhabdomyolysis due to muscle β-enolase deficiency: very rare or underestimated? J Neurol. 2014; 261 (12): 2424–2428. DOI: 10.1007/s00415-014-7512-7. PMID: 25267339.

65. Keller A., Demeurie J., Merkulova T., Géraud G., CywinerGolenzer C., Lucas M., Châtelet F.P. Fibre-type distribution and subcellular localisation of alpha and beta enolase in mouse striated muscle. Biol Cell. 2000; 92 (7): 527–535. DOI: 10.1016/s0248-4900(00)01103-5. PMID: 11229603.

66. Force A., Viallard J.-L., Saez F., Grizard G., Boucher D. Electrophoretic characterization of the human sperm-specific enolase at different stages of maturation. J Androl. 2004; 25 (5): 824–829. DOI: 10.1002/j.1939-4640.2004.tb02861.x. PMID: 15292116.

67. Force A., Viallard J.-L., Grizard G., Boucher D. Enolase isoforms activities in spermatozoa from men with normospermia and abnormospermia. J Androl. 2002; 23 (2): 202–210. PMID: 11868813.

68. Isgrò M.A., Bottoni P., Scatena R. Neuron-specific enolase as a biomarker: biochemical and clinical aspects. Adv Exp Med Biol; 2015; 867: 125–143. DOI: 10.1007/978-94-017-7215-0_9. PMID: 26530364.

69. Pancholi V. Multifunctional α-enolase: its role in diseases. CMLS, Cell Mol Life Sci. 2001; 58 (7): 902–920. DOI: 10.1007/PL00000910. PMID: 11497239.

70. Kimura S., Hayano T., Kato K. Properties and application to immunoassay of monoclonal antibodies to neuron-specific gamma gamma enolase. Biochim Biophys Acta. 1984; 799 (3): 252–259. DOI: 10.1016/0304-4165(84)90268-x. PMID: 6375733.

71. Kato K., Ishiguro Y., Suzuki F., Ito A., Semba R. Distribution of nervous system-specific forms of enolase in peripheral tissues. Brain Res. 1982; 237 (2): 441–448. DOI: 10.1016/0006-8993(82)90455-3. PMID: 7044473.

72. Sterk M., Oenings A., Eymann E., Roos W. Development of a new automated enzyme immunoassay for the determination of neuron-specific enolase. Anticancer Res. 1999; 19 (4A): 2759–2762. PMID: 10470236.

73. Mair J. Progress in myocardial damage detection: new biochemical markers for clinicians. Crit Rev Clin Lab Sci. 1997; 34 (1): 1–66. DOI: 10.3109/10408369709038215. PMID: 9055056.

74. Kawata K., Liu C.Y., Merkel S.F., Ramirez S.H., Tierney R.T., Langford D. Blood biomarkers for brain injury: what are we measuring? Neurosci Biobehav Rev. 2016; 68: 460–473. DOI: 10.1016/j.neubiorev.2016.05.009. PMID: 27181909.

75. Lissner Östlund E., Levin H., Nielsen N., Frigyesi A., Lybeck A. Neuron-specific enolase and long-term neurological outcome after OHCA — a validation study. Resuscitation. 2021; 168: 206–213. DOI: 10.1016/j.resuscitation.2021.09.001. PMID: 34508799.

76. Nyholm B., Grand J., Obling L.E.R., Hassager C., Møller J.E., Schmidt H., Othman M.H., et al. Quantitative pupillometry for neuroprognostication in comatose post-cardiac arrest patients: a protocol for a predefined sub-study of the Blood pressure and Oxygenations Targets after Out-of-Hospital Cardiac Arrest (BOX)-trial. Resusc Plus. 2023; 16100475. DOI: 10.1016/j.resplu.2023.100475. PMID: 37779885.

77. Ferraro S., Braga F., Luksch R., Terenziani M., Caruso S., Panteghini M. Measurement of serum neuron-specific enolase in neuroblastoma: is there a clinical role? Clin Chem. 2020; 66 (5): 667–675. DOI: 10.1093/clinchem/hvaa073. PMID: 32353141.

78. Bersani I., Pluchinotta F., Dotta A., Savarese I., Campi F., Auriti C., Chuklantseva N., et al. Early predictors of perinatal brain damage: the role of neurobiomarkers. Clin Chem Lab Med. 2020; 58 (4): 471–486. DOI: 10.1515/cclm-2019-0725. PMID: 31851609.

79. Dobrut A., Brzozowska E., Górska S., Pyclik M., Gamian A., Bulanda M., Majewska E., et al. Epitopes of immunoreactive proteins of Streptococcus Agalactiae: enolase, inosine 5‘- monophosphate dehydrogenase and molecular chaperone GroEL. Front Cell Infect Microbiol. 2018; 8: 349. DOI: 10.3389/fcimb.2018.00349. PMID: 30333963.

80. Ramirez-Celis A., Edmiston E., Schauer J., Vu T., Van de Water J. Peptides of neuron specific enolase as potential ASD biomarkers: from discovery to epitope mapping. Brain Behav Immun. 2020; 84: 200–208. DOI: 10.1016/j.bbi.2019.12.002. PMID: 31812776.

81. Montaner J., Ramiro L., Simats A., Tiedt S., Makris K., Jickling G.C., Debette S. et al. Multilevel omics for the discovery of biomarkers and therapeutic targets for stroke. Nat Rev Neurol. 2020; 16 (5): 247–264. DOI: 10.1038/s41582-020-0350-6. PMID: 32322099.

82. Горяйнова О.С., Хан Е.О., Иванова Т.И., Тиллиб С.В. Новый метод, базирующийся на использовании иммобилизованных однодоменных антител для удаления определенных мажорных белков из плазмы крови, способствует уменьшению неспецифического сигнала в иммуноанализе. Медицинская иммунология. 2019; 21 (3): 567–575. DOI: 10.15789/1563-0625-2019-3-567-575.

83. Carney D., Ihde D., Cohen M., Marangos P., Bunn P., Minna J., Gazdar A. Serum neuron-specific enolase: a marker for disease extent and response to therapy of small-cell lung cancer. Lancet. 1982; 1 (8272): 583–585. DOI: 10.1016/S0140-6736(82)91748-2. PMID: 6121182.

84. Marangos P.J., Campbell I.C., Schmechel D.E., Murphy D.L., Goodwin F.K. Blood platelets contain a neuron‐specific enolase subunit. J Neurochem. 1980; 34 (5): 1254–1258. DOI: 10.1111/j.1471-4159.1980.tb09967.x. PMID: 7373305.

85. Genet S.A.A.M., Wolfs J.R.E., Vu C.B.A.K., Wolter M., Broeren M.A.C., Van Dongen J., et al. Analysis of Neuron-Specific enolase isozymes in human serum using immunoaffinity purification and liquid chromatography-tandem mass spectrometry quantification. J Chromatog B Analyt Technol Biomed Life Sci. 2023; 1223: 123701. DOI: 10.1016/j.jchromb.2023.123701. PMID: 37086508.

86. Torsetnes S.B., Løvbak S.G., Claus C., Lund H., Nordlund M.S., Paus E., Halvorsen T.G., et al. Immunocapture and LC-MS/MS for selective quantification and differentiation of the isozymes of the biomarker neuron-specific enolase in serum. J Chromatog B Analyt Technol Biomed Life Sci. 2013; 929: 125–132. DOI: 10.1016/j.jchromb.2013.04.010. PMID: 23669612.

87. Marangos P.J., Schmechel D.E. Neuron specific enolase, a clinically useful marker for neurons and neuroendocrine cells. Annu Rev Neurosci. 1987; 10: 269–295. DOI: 10.1146/annurev.ne.10.030187.001413. PMID: 3551759.


Рецензия

Для цитирования:


Голубев А.М. Енолазы: ограничения внедрения в клиническую практику (обзор-дискуссия). Общая реаниматология. 2024;20(3):53-64.

For citation:


Golubev A.М. Enolases: Limitations for Implementation in Clinical Practice (Critical Review). General Reanimatology. 2024;20(3):53-64.

Просмотров: 431


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)